Eng
Ukr
Rus
Print
2025 №01 (02) DOI of Article
10.37434/as2025.01.03
2025 №01 (04)

Automatic Welding 2025 #01
"Avtomatychne Zvaryuvannya" (Automatic Welding), #1, 2024, pp. 13-22

Regarding the issue of determining the quantitative phase composition of the metal of welded joints of duplex steels

G.V. Fadeeva1, S.Yu. Maksymov1, Chuanbao Jia2, D.V. Vasiliev1, A.A. Radzievska1

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: maksimov@paton.kiev.ua
2MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials Joining, Shandong University, Jinan 250061

The article considers the main methods and techniques that exist today for quantitative determination of the phase composition of metal in welded joints of high-alloy and duplex stainless steels (DSS). The expediency of using one or another method in different cases is analyzed. The article presents the results of the analysis of the influence of cooling rate on the structure and phase composition of weld metal and HAZ in welding of high-alloy chromium-nickel steels and duplex stainless steels. It is shown that due to the influence of high cooling rates, such as during welding in aqueous medium, the amount of ferritic component in the weld metal and deposited metal of high-alloy steels decreases, whereas in the weld metal and HAZ of duplex steels, on the contrary, the amount of austenitic component decreases. This depends on the type of metal crystallization. These data explain the differences in determining the phase composition of weld metal and deposited metal at the same alloying during welding in different environments. The main advantages and disadvantages of various methods and techniques for quantitative determination of the phase composition of welded joints of high-alloy and duplex steels are shown. 28 Ref., 6 Tabl., 7 Fig.
Keywords: high-alloy chromium-nickel steels, duplex steels, phase composition, austenite, ferrite, cooling rate, methods for quantitative determination of phase composition


Received: 25.09.2024
Received in revised form: 29.10.2024
Accepted: 15.01.2025

References

1. Kakhovsky, N.I. (1975) Welding of high-alloy steels. Kyiv, Tekhnika [in Russian].
2. Kopersak, N.I. (1963) Influence of alloying elements on 475o brittleness of austenitic-ferritic deposited metal. Avtomatich. Svarka, 7 [in Russian].
3. Belinsky, A.L. et al. (1970) About corrosion resistance of pure austenitic steel grade OKh17N16M3T. In Coll.: Protection of Metals, Vol. 6, Issue 1. Moscow, Nauka [in Russian]. 4. https://nas.su>books>razdel 722.
5. Labanowski, J. (1997) Duplex steels - new material for chemical processing industry. Engineering and Chemical Equipment, 2, 3-10.
6. API 582-09. Welding quidelines for the chemical, oil, and gas industries.
7. Norsok M-630, Edition 6. Oktober 2013. Material data sheets and element data sheets for piping.
8. Muthupandi, V., Srinivasan, P.B., Seshadri, S.K., Sundaresan, S. (2003) Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. and Engin.: A, 358, 1-2, 9-16. https://doi.org/10.1016/S0921-5093(03)00077-7
9. Liou, H.-Y., Hsieh, R.-I., Tsai, W.-T. (2002) Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels. Materials Chemistry and Physics, 74, 33-42. https://doi.org/10.1016/S0254-0584(01)00409-6
10. Higelin, A., Manchet, S.L., Passot, G. et al. (2022) Heat-affected zone ferrite content control of a duplex stainless steel grade to enhance weldability. Welding in the World, 66, 1503-1519. https://doi.org/10.1007/s40194-022-01326-0
11. Verma, I., Taiwade, R.V (2017) Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments - A review. J. of Manufacturing Processes, 25, 134-152. https://doi.org/10.1016/j.jmapro.2016.11.003
12. Schäffler, A.L. (1949) Constitution diagram for stainless steel weld metal. Metal Progress, 56, 680‑680.
13. Delong, F. (1973) Ferrite determination in stainless steel weld metal. Welding J., 10.
14. Kotecki, D.I., Siewert, P.A. (1992) WRC-1992 Constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram. Welding J., 71(5), 171-178.
15. Lippold, J.C., Kotecki, D.J. (2005) Welding Metallurgy and Weldability of Stainless Steel. Wiley, Hoboken, New Jersey.
16. Kolpingon, E.Yu., Ivanova, M.V., Shitov, E.V. (2007) Nitrogen-containing steels of equivalent composition. Chyornye Metally, February, 10-12 [in Russian]. https://doi.org/10.1134/S0036029507080186
17. Pomarin, Yu.M., Bialik, O.M., Hryhorenko, H.M. (2007) The influence of gases on the structure and properties of metals and alloys. Kyiv, NTUU KPI [in Ukrainian].
18. Cobelli, P. (2003) Development of ultrahigh strength austenitic stainless steels alloyed with nitrogen: Syn. of Thesis for Dr. of Techn. Sci. Degree. Swiss Federal Institute of Technology in Zurich.
19. Vicente, A., Silva, P.A.D., Souza, R.L.D., Santos, I.L.D. et al. (2020) The use of duplex stainless steel filler metals to avoid hot cracking in GTAW welding of austenitic stainless steel AISI 316L. https://doi.org/10.11606/T.3.2017.tde-05092017-103140
20. Jonson, E., Grabaek, L. et al. (1988) Microstructure of rapidly solidified stainless steel. Mater. Sci. and Engin., 98, 301-303. https://doi.org/10.1016/0025-5416(88)90174-7
21. http://www Sales@otec.com.ua.
22. ASTM E 562 (2020) Standard test method for determining volume fraction by systematic manual point count. West Conshohocken: ASTM.
23. Sheiko, I.V., Grigorenko, G.M., Shapovalov, V.A. (2016) Alloying of steels and alloys with nitrogen from the arc plasma. Theory and practice (Review. Pt. 1). Sovrem. Elektrometall., 122(1), 32-37 [in Russian]. https://doi.org/10.15407/sem2016.01.05
24. Verma, J., Taiwade, R.V., Khatirkar, R.K. et al. (2016) Microstructure, mechanical and intergranular corrosion behavior of dissimilar DSS 2205 and ASS 316 L shielded metal arc welds. Trans. Indian Inst. Met., 70, 225-237. https://doi.org/10.1007/s12666-016-0878-8
25. Zemzin, V.N. (1966) Welded joints of dissimilar steels. Moscow, Mashinostroenie [in Russian].
26. ASTM E 1245-03 (2023) Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. https://cdn.standards.iteh.ai.
27. Vicente, A., Silva, P.A.D, Sadanandan, S. et al. (2020) Study on the effect of nitrogen content and cooling rate on the ferrite number of austenitic stainless steels. Int. J. of Advanced Engin. Research and Sci. (UAERS), 7(11), 270-277. https://doi.org/10.22161/ijaers.711.34
28. Maksymov, S.Yu., Fadeyeva, G.V., Jia Chuanbao, Kostin, V.A. et al. (2024) Influence of cooling rate on the microstructure and phase composition of the HAZ of duplex stainless steel (DSS) 2205 during wet underwater welding. The Paton Welding J., 1, 3-12. https://doi.org/10.37434/tpwj2024.01.01

Advertising in this issue: