2017 №03 (07) DOI of Article
2017 №03 (01)

Electrometallurgy Today 2017 #03
Electrometallurgy today, 2017, #3, 51-58 pages

Intermetallics of titanium. Peculiar features, properties, application (Review)

S.G. Grigorenko, G.M. Grigorenko, O.M. Zadorozhnyuk
E.O. Paton Electric Welding Institute, NASU. 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua

Literature data are given about physical and mechanical properties of the titanium intermetallics, which are most important for practical application. Due to unique properties the titanium intermetallics find the wide spreading in: medicine (manufacture of stents, (endo) prostheses, implants), engine manufacturing, power-generating and turbo- ventilation units, gas turbine systems, rocketry, aircraft industry, armored vehicles, chemical machine building, food industry and motor-car construction. Peculiar features of such intermetallics as aluminides, silicides, borides and nickelides of titanium are considered. Information is given about prospects of their application. Except the melting of parts of intermetallics by using a centrifugal casting, the scientists are mostly prone during recent years to applying the additive technologies. Main methods and power sources for producing 3D products are given. Ref. 29, Figures 4.

Key words: intermetallic compounds; titanium aluminides; titanium silicides; titanium borides; titanium nickelides; properties; additive production
  1. (2001) State diagrams of binary metal systems. Ed. by N.P. Lyakishev. Moscow: Mashinostroenie, Vol. 3 [in Russian].
  2. https://ru.wikipedia.org/wiki/Nickel_titanium
  3. Duerig, T.W., Melton, K.N., Stockel, D. (1990) Engineering aspects of shape memory alloys. London: Butterworth-Heinemann.
  4. Otsuka, K., Wayman, C.M. (1998) Shape memory materials. Cambridge, Cambridge University Press.
  5. Otsuka, K., Shimizu, K, Suzuki, Yu. (1990) Shape memory alloys. Moscow: Metallurgiya.
  6. Carosio, S., Pozzolini, P., Van Hambeeck, J. et al. (2003) Aplication of shape memory alloys to develop a massive actuator for rock splitting in. Eds. by A.R. Pelton, T. Duerig. In: of SMST-2003, SMST Society.
  7. Firstov, S.A., Tkachenko, S.V., Kuz'menko, N.N. (2009) Titanium «irons» and titanium «steels». Metal Sci. and Heat Treatment, 1, 12–18. https://doi.org/10.1007/s11041-009-9119-7
  8. Firstov, S., Gornaya, I., Gorpenco, K. et al. (2006) Influence of zirconium on phase composition, structure, and mechanical properties of as-cast alloys of Ti–Al–Si system: High Temperature Materials and Processes. Freund Publish. House LTD, 25(1/2), 59–66.
  9. Bulanova, M.V., Bankovskiy, O.I., Velikanova, T.Ya. et al. (2000) Phase composition and mechanical properties of Ti–Si–Al–Zr in situ composites. Zeitschrift fuer Metallkunde, 1.
  10. Bulanova, M.V., Tretuachenko, L., Meleshevich, K., Firstov, S. (2003) Influence of tin on the structure and properties of as-cast Ti-rich Ti–Si alloys. of Alloys and Сompounds, 350, 164–173. https://doi.org/10.1016/S0925-8388(02)00971-4
  11. Brodnikovsky, D.N., Golovash, A.V., Tkachenko, S.V. et al. (2006) Influence of unwrought silicide particles on nature of deformation of titanium-base alloys at elevated temperatures. Physics of Metals and Advanced Technologies, 28, 137–146 [in Russian].
  12. Firstov, S.A., Gornaya, I.D., Gorpenko, K.A. (2003) Niobium influence on the structure and properties of eutectic Ti–3Al–6Si–xNb alloys. Sci. Forum, 426–432, 4591–4596.
  13. Antonova, N., Firstov, S., Miracle, D.B. (2003) Investigation of phase equilibrium in the Ti–Al–Si–Nb system at low Nb contents. Acta materialia, 51, 3095–3107. https://doi.org/10.1016/S1359-6454(03)00121-6
  14. Ramos, A.S., Nunes, C.A., Coelho, G.C. (2006) On the peritectoid Ti3Si formation in Ti–Si alloys. Materials Characterization, 56, 107–111. https://doi.org/10.1016/j.matchar.2005.09.009
  15. Frommeyer, G. (2003): Structures and properties of the refractory silicides Ti5Si3 and TiSi2 and Ti–Si–(Al) eutectic alloys. In: NATO Advanced Research Workshop on Metallic Materials with High Structural Efficiency (Sept. 07­13, 2003, Kyiv, Ukraine).
  16. (2008) Inorganic materials science. Eds. by G.G. Gnesin, V.V. Skorokhod. Encyclopedic edition in 2 vol.: Materials and technologies. Kiev: Naukova Dumka [in Russian].
  17. Ronald, G., Munro, J. Res. (2000) Inst. Stand. Technol., 105.
  18. Basu, B., Raju, G.B., Suri, A.K. (2006) International Materials Reviews, 51.
  19. Raju, G.B., Basu, B. (2009) Key Engineering Materials, 395.
  20. (2000) State diagrams of binary metal systems. Ed. by N.P. Lyakishev. Moscow: Mashinostroenie [in Russian].
  21. Sereda, B.P., Zherebtsov, A.A. (2008) Examination of structure formation of titanium aluminides in their producing by SHS method. http://www.nbuv.gov.ua/old_jrn/natural/smm/SSh/2008_1/Statyi_tom1/15.pdf [in Russian].
  22. (2003) Gamma titanium aluminides. by K.W Kim, H. Clemens. TMS, Warrendale, PA, USA.
  23. (2003) Titanium and titanium alloys. Eds. by M. Peters, C. Leyens. Wiley, VCH, Weinkeim, Germany.
  24. Kolachev, B.A., Iliin, A.A., Drozdov, P.D. (2001) About influence of grain boundaries on plasticity of intermetallides. Russian Metallurgy (Metally), 3, 41–48 [in Russian].
  25. Illiin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties. Moscow: VILS-MATI [in Russian].
  26. (1994) Material Properties Handbook. Titanium Alloys. Eds. by R. Boyer, G. Welsch, E. Collings. ASM International.
  27. Imaev, R.M., Kajbyshev, O.A., Salishchev, G.Yu. (1991) Mechanical properties of fine-grained intermetallide TiAl. Brittle-tough transition. The Physics of Metals and Metallography, 3, 179–187 [in Russian].
  28. Imaev, R.M., Imaev, V.M. (1992) Mechanical behavior of submicrocrystalline intermetallide TiAl at elevated temperatures. Ibid., 2, 125–129 [in Russian].
  29. (2003) Titanium'2003: Science and Technology. In: of 10th World Conf. on Titanium (13–18 July 2003, Hamburg, Germany), 1–5, 3425.