Eng
Ukr
Rus
Print

2019 №01 (05) DOI of Article
10.15407/sem2019.01.06
2019 №01 (01)

Electrometallurgy Today 2019 #01
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2019, #1, 46-56 pages

Journal                    Sovremennaya Elektrometallurgiya
Publisher                International Association «Welding»
ISSN                      2415-8445 (print)
Issue                       № 1, 2019 (February)
Pages                      46-56
 
 

Ways of increasing the energy efficiency of electric arc furnaces

S.N. Timoshenko1, A.P. Stovpchenko3, Yu.V. Kostetsky2, M.V. Gubinsky4


1Donetsk National Technical University. 2 Shybankova Sq., 85300, Pokrovsk, Donetsk region, Ukraine. Е-mail: mail@donntu.еdu.ua
2E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
3Engineering company «Elmet-Roll». P.B. 259, 03150, Kyiv, Ukraine. Е-mail: office@еlmet-roll.соm.uа
4National Metallurgical Academy of Ukraine. 4 Gagarina Ave., 49005, Dnipro, Ukraine. Е-mail: nmetau@ nmetau.еdu.ua

A complex of low-cost energy-efficient solutions for the modernization of electric arc furnaces was proposed: a deep pool, water-cooled panels with a spatial structure, a system of distributed aspiration and preliminary medium-temperature heating of a scrap by a powder-gas environment with an efficient extra burning of CO. Applying the methods of computer simulation, it was shown that using a complex of solutions in a 120-ton electric arc furnace can reduce energy consumption by 56...68 kW∙h/t. Ref. 29, Tabl. 6, Fig. 7.
Key words: electric arc furnace; energy efficiency; deep pool; water-cooled elements with volumetric structure; distributed aspiration system; medium temperature preheating of scrap
 
Received:                16.04.18
Published:               19.02.19
 
References
1. Morfeldt, J., Nijs, W., Silveira, S. (2015) The impact of climate targets on future steel production — an analysis based on global energy system model. J. of Cleaner Production, 103, 469–482. https://doi.org/10.1016/j.jclepro.2014.04.045
2. (2016) Global steel report. US Department of Commerce. International Trade Administration. July 2016. http://trade.gov/steel/pdfs/07192016global-monitor-report.pdf
3. Toulouevski, Yu., Zinurov, I. (2010) Innovation in electric arc furnaces. Scientific basis for selection. Berlin, Germany, Springer-Verlag. https://doi.org/10.1007/978-3-642-03802-0
4. Stovpchenko, G., Projdak, Yu., Kamkina, L. et al. (2008) Low carbon steel manufacture in EAF steelmaking shop. Archives of Metallurgy and Materials, 53(2).
5. Kuhn, R. (2005) Continuous off-gas measurement and energy balance in electric arc steelmaking. ISIJ Int., 25(11), 1587–1596. https://doi.org/10.2355/isijinternational.45.1587
6. Zuccato Energia Company Presentation. http://www.zuccatoenergia.it/index.php/en (assessed 11.04.18).
7. Grant, M. (2000) Principles and strategy of EAF post-combustion. In: Proc. of 58-th Electric Furnace Conf. (Orlando, USA, November 12–15th).
8. Toulouevski, Yu., Zinurov, I. (2015) Electric arc furnace with flat bath. Achievements and prospects. Springer, Heidelberg–New York–Dordrecht–London.
9. Lehner, J., Friedacher, A., Gould, L., Fingerhut, W. (2004) Low-cost solutions for the removal of dioxin from EAF offgas. La Metallurgia Italiana, 4, 67–70. https://doi.org/10.1051/metal:2004145
10. Nagai, T., Sato, Y., Kato, H. et al. (2015) The most advanced power saving technology in EAF. Introduction to EcoArc. https://steelplantech.com/wp-content/uploads/2015/07/The-most-advanced-power-saving-technology-in-EAF-Introduction-to-ECOARC.pdf
11. Eco — friendly and efficient: COSS furnace — continuously optimized shaft system. http://www.fuchs technology.net/en/fulfillment/furnace-systems/coss–furnace.html (assessed 30.09.2017).
12. Rummler, K., Tunaboylu, A., Ertas, D. (2001) Scrap preheating and continuous charging system for EAF meltshop. MPT Int., 5, 32–36.
13. Abel, M., Hein, M., Huber, H.-J. (2015) EAF quantum. The future approach to efficient scrap melting. Steelworld, June, 91–94. http://steelworld.com/newsletter/2015/June15/Technology0615-2.pdf
14. Gottardi, R., Miani, S., Partyka, A., Engin, B. (2008) UHCP-Elektrolichtbogenofen erreicht Produktionsrate von 320 t-h. Stahl und Eisen, 128(8), 19–24 (in German].
15. Dorndorf, M., Liese, M., Granderath, R., Schrade, C. (2016) High efficient energy recovery solutions for melt shops. La Metallurgia Italiana, 9, 24–31.
16. Gubynsky, M.V., Tymoshenko, S.M., Shrajber, O.A., Antonets, I.V. (2017) Increase in energy efficiency of electric steelmaking processes by conversion of natural gas with arc furnace waste gases. Problemy Naukovoi Energetyky: Transact., 48(1), 60–66 [in Ukrainian].
17. Falkenreck, U., Weischedel, W. (2007) New scrap-based steelmaking process predominantly using primary energy. MPT Int., 3, 52–55.
18. Tuluevsky, Yu.N., Zinurov, I.Yu., Shver, V.G. (2011) New possibilities of Consteel furnaces. Elektrometallurgiya, 6, 22–27 [in Russian].
19. Egorov, A.V. (1990) Calculation of power and parameters of electric furnaces of ferrous metallurgy. In: Manual for higher education institutions. Moscow, Metallurgiya [in Russian].
20. Timoshenko, S. N. (2016) Computer modeling bath geometry to improve energy efficiency of electric arc furnace. Sistemnye Tekhnologii, 3, 33–39 [in Russian].
21. Kawakami, М., Takatani, R., Brabie, L. (1999) Heat and mass transfer analysis of scrap melting in steel bath. Tetsu to Hagane, 85(9), 658–665. https://doi.org/10.2355/tetsutohagane1955.85.9_658
22. Mazumdar, D., Guthrie, R. (1995) The physical and mathematical modeling of gas stirred ladle systems. ISIJ Int., 35(1), 1–20. https://doi.org/10.2355/isijinternational.35.1
23. Li, J., Provatas, N. (2008) Kinetics of scrap melting in liquid steel: Multipiece scrap melting. Metallurg. and Mater. Transact., 39B(4), 268–279. https://doi.org/10.1007/s11663-007-9102-x
24. Nakanishi, K., Fujii, T., Szekely, J. (1975) Possible relationship between energy dissipation and agitation in steel processing operations. Ironmaking & Steelmaking, 3, 193–194.
25. Timoshenko, S.N., Gubinsky, M.V. (2016) Increase in energy efficiency of steelmaking process with continuous melting of charge in liquid bath. Tekhnichna Teplofizyka ta Promyslova Teploenergetyka, 8, 174–183 [in Russian].
26. Timoshenko, S. N. (2017) Analysis of energy efficient solutions of a small capacity electric arc furnace and their synthesis in a new generation 15-ton unit. Suchasni Problemy Metallurgii, 20, 78–87 [in Ukrainian].
27. Doroshenko, A.V., Dyadkov, B.P., Timoshenko, S.N., Tishchenko, P.I. (2017) Combined water-cooled electric furnace roof of small capacity. Metallurgicheskaya i Gornorudnaya Promyshlennost, 5, 91–95 [in Russian].
28. Timoshenko, N.S., Semko, A.N., Timoshenko, S.N. (2013) Modeling of energy-saving solutions for outgassing from arc steelmaking furnace. Naukovi Pratsi DNTU. Seriya Metalurgiya, 84–95 [in Russian].
29. Guézennec, A.G., Huber, J.C., Patisson, F.R. et al. (2004) Dust formation by bubble-burst phenomenon at the surface of a liquid steel bath. ISIJ Int., 44(8), 1328–1333. https://doi.org/10.2355/isijinternational.44.1328