Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2020 №04 (02) DOI of Article
2020 №04 (04)

Electrometallurgy Today 2020 #04
SEM, 2020, #4, 16-22 pages

Effect of the structure of vacuum condensates of high entropy alloys of Cr–Fe–Co–Ni–Cu system on their mechanical properties

A.I. Ustinov1, V.S. Skorodzievskii2, S.A. Demchenkov1, S.S. Polishchuk2, T.V. Melnichenko1
1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine. 36 Acad. Vernadsky Blvd., Kyiv, 03142, Ukraine. E-mail: metall@imp.kiev.ua

In this work mechanical and dissipative properties of vacuum condensates of high-entropy alloys (HEAs) of Cr–Fe–Co–Ni–Cu system produced by high-rate electron beam vapor deposition in a vacuum are investigated, depending on their structural-phase state. It is shown that a transition from a single-phase (FCC) structure of the condensate to the dual-FCC phase state (FCC1 + FCC2) occurs in the temperature range of 923…1025 K. It was found that the mechanical properties of CrFeCoNiCu vacuum condensates produced by EBPVD method, significantly depend on their structural and phase states. Two-phase condensates exhibit a lower microhardness (3.0 GPa) and higher plasticity (δA = 0.90) against those of single-phase condensates (5.5 GPa and δA = 0.83) due to the presence of plastic Cu-rich precipitates at grain boundaries of CrFeCoNiCu0.5 solid solution. It is shown that transition from the single-phase FCC structure to a two-phase structure (FCC1 + FCC2) in CrFeCoNiCu coatings leads to increase of the damping capacity by 1.5…1.7 times in the temperature range of 293…693 K, and by 3…4 times, compared with an uncoated sample. Ref. 20, Tabl. 2, Fig. 8.
Keywords: high-entropy alloys; electron beam deposition; vacuum condensates; phase composition; mechanical properties; microhardness; Young’s modulus; damping capacity

Received 21.10.2020


1. Yeh, J.-W., Chen, S.-K., Lin, S.-J. et al. (2004) Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 299(6), 299-303. https://doi.org/10.1002/adem.200300567
2. Tong, C.J., Chen, M.R., Chen, S.K. et al. (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurg. and Mater. Transact. A, 36, 1263-1271. https://doi.org/10.1007/s11661-005-0218-9
3. Chuang, M.H., Tsai, M.H., Wang, W.R. et al. (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5y high-entropy alloys. Acta Materialia, 59, 6308-6317. https://doi.org/10.1016/j.actamat.2011.06.041
4. Wu, Z., David, S.A., Feng, Z., Bei, H. (2016) Weldability of a high entropy CrMnFeCoNi alloy. Scripta Materialia, 124, 81-85. https://doi.org/10.1016/j.scriptamat.2016.06.046
5. Braeckman, B.R., Boydens, F., Hidalgo, H. et al. (2015) High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71-76. https://doi.org/10.1016/j.tsf.2015.02.070
6. Sobol`, O.V., Andreev, A.A., Gorban, V.F. (2012) Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Technical Physics Letters, 38(7), 616-619. https://doi.org/10.1134/S1063785012070127
7. Wang, L.M., Chen, C.C., Yeh, J.W., Ke, S.T. (2011) The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys. Materials Chemistry and Physics, 126, 880-885. https://doi.org/10.1016/j.matchemphys.2010.12.022
8. Zhang, H., Wu, W., He, Y. et al. (2016) Formation of core-shell structure in high entropy alloy coating by laser cladding. Applied Surface Science, 363, 543-547. https://doi.org/10.1016/j.apsusc.2015.12.059
9. Wu, Z.F., Wang, X.D., Cao, Q.P. et al. (2014) Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x = 0 and 2.5) high-entropy alloy films. J. of Alloys and Compounds, 609, 137-142. https://doi.org/10.1016/j.jallcom.2014.04.094
10. An, Z., Jia, H., Wu, Y. et al. (2015) Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Materials Research Letters, 3(4), 203-209. https://doi.org/10.1080/21663831.2015.1048904
11. Cheng, J.B., Liang, X.B., Wang, Z.H. (2013) Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process. Plasma Chem. Plasma Process, 33, 979-992. https://doi.org/10.1007/s11090-013-9469-1
12. Arfaoui, M., Radnóczi, G., Kovács, Kis V. (2020) Transformations in CrFeCoNiCu high entropy alloy thin films during in-situ annealing in TEM. Coatings, 10, 60. https://doi.org/10.3390/coatings10010060
13. Shaginyan, L.R., Britun, V.F., Krapivka, N.A. et al. (2018) The properties of Cr-Co-Cu-Fe-Ni alloy films deposited by magnetron sputtering. Powder Metallurgy and Metal Ceramics, 57(5-6), 293-300. https://doi.org/10.1007/s11106-018-9982-0
14. Ustinov, A.I., Polishchuk, S.S., Demchenkov, S.A., Melnichenko, T.V. (2019) Producing of thick vacuum condensates of high-entropic alloys CrFeCoNiCu and AlCrFeCoNiCu by the method of electron beam deposition. Sovrem. Elektrometallyrgiya, 2, 13-21 [in Russian]. https://doi.org/10.15407/sem2019.02.03
15. Skorodzievskii, V.S., Ustinov, A.I., Polishchuk, S.S. et al. (2019) Dissipative properties of Al-(Fe, Cr) vacuum coatings with different composite structures. Surface and Coatings Technology, 367, 179-186. https://doi.org/10.1016/j.surfcoat.2019.03.074
16. Oliver, W., Pharr, G. (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. of Materials Research, 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564
17. Milman, Yu.V. (2008) Plasticity characteristic obtained by indentation. J. of Physics D: Applied Physics, 41, 074013. https://doi.org/10.1088/0022-3727/41/7/074013
18. Ustinov, A.I., Nekrasov, A.A., Perederij, V.A. et al. (2012) Unit for examination of dissipatives properties of metallic specimens with coating. Zavod. Laboratoriya, 10, 41-44 [in Russian].
19. Ustinov, A., Polishchuk, S., Skorodzievskii, V., Telychko, V. (2009) Structure and properties of quasicrystalline and approximant EBPVD coatings of Al-based systems. Zeitschrift für Kristallographie, 224, 9-12. https://doi.org/10.1524/zkri.2009.1109
20. Ustinov, А.I., Polishchuk, S.S., Demchenkov, S.А., Petrushinets, L.V. (2015) Effect of microstructure of vacuum-deposited Fe100−xNix (30 < x < 39) foils with FCC structure on their mechanical properties. J. of Alloys and Compounds, 622, 54-61. https://doi.org/10.1016/j.jallcom.2014.10.039

Advertising in this issue: