Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2024, #1, 40-48 pages
Application of external influence in the production of steel ingots. Overview
V.V. Barabash, F.K. Biktahirov
E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
Abstract
The article focuses on analyzing the utilization of external influences, such as metal modification, vibration, stirring the
metal pool, and hot topping of steel ingots. It demonstrates the positive impact of external influences on the conditions
of crystallization and solidification in various ingots. A conclusion was made that an effective approach to influencing
the molding of a steel ingot can involve a combination of heating and stirring in the hot top by introducing a device into
the core of the ingot, setting the liquid metal in motion. 40 Ref., 6 Fig.
Keywords: steel ingot, quality, external influences, modification, vibration, stirring, heat removal, metal, hot topping
Received: 27.12.2023
Received in revised form: 08.01.2024
Accepted: 13.02.2024
References
1. Popovych, V., Kondyr, A., Pleshakov, A. et al. (2009) Technology of structural materials and materials science. Practical Work. Lviv, Svit [in Ukrainian].
2. Goldshtejn, Ya.E., Mizin, V.G. (1986) Modification and microalloying of cast iron and steel. Vol. 272. Moscow, Metallurgiya [in Russian].
3. Shapovalov, V.O., Biktagirov, F.K., Mogylatenko, V.G. (2023) Out-of-furnace processing of steel: Methods, processes, technologies: Manual. Kyiv, Khimdjest [in Ukrainian].
4. Turbar, V.P., Garkalenko, D.M., Tabolaeva, L.V. et al. (2009) Influence of modification by calcium on quality of wheel steel. Metall i Litiyo Ukrainy, 4-5, 55-58 [in Russian].
5. Kondratyuk, S.E., Stoyanova, O.M., Shcheglov, V.M. et al. (2015) Modification of steel by nanosized powder inoculators. Metaloznavstvo ta Obrobka Metaliv, 3, 3-7 [in Ukrainian].
6. Shcheglov, V.M., Kondratyuk, S.E., Prymak, I.N. (2010) Improvement of efficiency of steel modification. Metaloznavstvo ta Obrobka Metaliv, 2, 51-57 [in Ukrainian].
7. Sokolov, N.A., Tuzov, G.A., Kovalev, N.I. (1971) Influence of modifying additives on quality of steel for casting of thinwalled moulds. In: Proc. of Rep. Sci.-Techn. Conf. on Theory and Practice of Microalloying and Modification of Steels (Donetsk, 7-9 December 1971), 57 [in Russian].
8. Titarenko, V.A., Shulte, Yu.A. (1971) Influence of modification on nature of nonmetallic inclusions and properties of steel. In: Proc. of Rep. Sci.-Techn. Conf. on Theory and Practice of Microalloying and Modification of Steels (Donetsk, 7-9 December 1971), 72 [in Russian].
9. Paton, B.E., Medovar, B.I., Saenko, V.Ya., Emelyanenko, Yu.G. (1981) Control of ingot crystallization by introduction of macrocoolers in electroslag remelting. Litiyo s Primeneniem Inoculatorov, Kyiv, PTI MA NASU, 13-19 [in Russian].
10. Li, C., Zhang, Q., Zhu, L. et al. (2021) Application of heat absorption method to improve quality of large steel ingot. ISIJ Inter., 61(3), 865-870.
https://doi.org/10.2355/isijinternational.ISIJINT-2020-59711. Xu, Y., Wang, J., Shuai, S. et al. (2023) Improving microstructure and segregation of steel ingot by inorganic heat absorption method. Materials Sci. and Technology, 39(16), 1-12.
https://doi.org/10.1080/02670836.2023.221091312. Mogylatenko, V.G. (2019) Visualization of ingot solidification under vibration impact. Teoriya i Praktyka Metalurgii, 4, 31-37 [in Ukrainian].
13. Efimov, V.A., Eldarkhanov, A.S. (1998) Modern technologies of casting and crystallization of alloys. Moscow, Mashinostroenie [in Russian].
14. Eldarkhanov, A.S. (1996) Crystallization processes in the field of elastic waves. Moscow, Metallurgiya [in Russian].
15. Efimov, V.A. (1998) Prospects of development of works on application of external impacts on liquid and crystallizing melt. Kyiv, Collect. of PTI MA NASU, 3-21 [in Russian].
16. Efimov, V.A., Eldarkhanov, A.S. (1995) Physical methods of impact on solidification processes of alloys. Moscow, Metallurgiya [in Russian].
17. Smirnov, A.N., Pilyushenko, V.L., Minaev, A.A. et al. (2002) Processes of continuous casting. Donetsk, DonNTU [in Russian].
18. Wei, C., Hezhou, S., Taixu, J. et al. (2009) Effect of mold electromagnetic stirring on quality of 0.60 °C steel casting billets. Special Steel, 30(5), 34.
19. Zeng, J., Chen, W., Zhang, S. et al. (2015) Development and application of final permanent magnet stirring during continuous casting of high carbon rectangular billet. ISIJ Inter., 55(10), 2142-2149.
https://doi.org/10.2355/isijinternational.ISIJINT-2015-18320. Zeng, J., Chen, W., Zhang, S. (2016) Experimental study of molten metal flow and numerical simulation of magnetic field during permanent magnet stirring and its application in continuous casting. Metallurgical Research & Technology, 113(6), 609-620.
https://doi.org/10.1051/metal/201604721. Zeng, J., Chen, W.Q., Yang, Y.D. et al. (2018) Effect of permanent magnet stirring on internal quality of steel. Ironmaking & Steelmaking, 45(6), 576-583.
https://doi.org/10.1080/03019233.2017.130392122. Xu, Y., Wang, E., Li, Z. et al. (2017) Effects of vertical electromagnetic stirring on grain refinement and macrosegregation control of bearing steel billet in continuous casting. J. of Iron and Steel Research Inter., 24(5), 483-489.
https://doi.org/10.1016/S1006-706X(17)30073-023. Yu, H.Q., Zhu, M.Y. (2012) Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmaking & Steelmaking, 39(8), 574-584.
https://doi.org/10.1179/0301923312Z.0000000005824. (2012) Device and method of production of large-sized homogeneous steel ingots using self-consumable mixer. China, Pat. 102806322A: B22D 7/12 (2006.01), No. 201210295047.6; Fill. 20.082012; Publ. 05.12.2012.
25. Khrykin, I.N., Kan, Yu.E., Shumilin, B.N. et al. (1980) Inert gas blowing of metal in mould. Advanced methods of production of steel ingots. Kyiv, Collect. of PTI MA NASU, 37-43 [in Russian].
26. Tyagun-Belous, G.S., Dudko, D.A. (1958) Nonconsumable electrode electroslag heating of ingot head and shaped castings. Avtomatich. Svarka, 10, 36-43 [in Russian].
27. Tyagun-Belous, G.S. (1959) Increase in chemical heterogeneity of shaped castings during electroslag hot topping. Avtomatich. Svarka, 3, 51-57 [in Russian].
28. Bastrakov, N.F., Tulin, N.A., Nemchenko, V.P. et al. (1978) Electroslag casting of steel. Moscow, Metallurgiya [in Russian].
29. Biktagirov, F.K., Voronin, A.E., Krutikov, R.G. et al. (1984) Investigation of electroslag casting of large ingots. Spets. Elektrometallurgiya, 56, 11-14 [in Russian].
30. Pshenichny, B.A., Voronin, A.E., Krutikov, R.G. et al. (1985) Quality of ingots of electroslag casting: Collect. on Improvement of continuous casting of ingots. Kyiv, 133- 137 [in Russian].
31. König, H., Mayer, K.-H., Keienburg, K.-H. et al. (1990) Influence of modern melting techniques on the creep behaviour of heavy-section components of 1 % CrMoV steels. Steel Res., 61(6), 274-278.
https://doi.org/10.1002/srin.19900034732. Tarmann, R., Machner, P., Kuhnelt, G. (1979) Production of B.E.S.T. ingots weighing up to 55 tons and quality of the forgings. Berg- und Huttenmannische Monatshefte, 124(5), 212-221.
33. Tochowicz, S., Klisiewicz, Z. (1979) Metallurgical methods of improving steel quality of ingots for large forgings. Hutnik (Katowice), 46(3), 106-111.
34. Basevi, S., Repetto, E., Scepi, M. (1979) The TREST process for manufacturing a Cr-Mo-V HP rotor shaft. In: Vacuum Metallurgy Conf. on Special Melting, 6th, 773-784.
35. Kuhnelt, G., Machner, P. (1976) Das B.E.S.T. - Verfahren, ein neuer Weg zur Herstellung hochwertiger Schmiedeblöcke. BHM, 121(5), 179-186.
36. Morinaka, K., Futamura, Y., Kitagawa, V. et al. (1988) The manufacture of the large ESHT-J ingot. Iron Steelmaker, 15(4), 9-15.
38. Biktagirov F.K., Shapovalov V.A., Efimov M.V. et al. (2016) Installation for electroslag heating of a crop of large ingots of up to 200 ton mass. Proc. of Medovar Memorial Sym., Kyiv, 7-10 June 2016, 207-210.
39. Nakano M., Kawano K., Mikami M. (2014) Manufactory of trial rotor forging of 9 % Cr steel containing Co and B (X13CrMoCoVNbNB9-2-1) for ultrasupercritical stream tuhbines. Advances in Materials Technology for Fossil Power Plants: Proc. of Seventh Inter. Conf., October 22-25, 2013 Waikoloa, Hawaii, USA. ASM International, 321-332.
https://doi.org/10.31399/asm.cp.am-epri-2013p032140. Mitchel A. (2005) The prospects for large forgings of segregation-sensitive alloys. Advances in electrometallurgy, 2, 2-6.
Advertising in this issue: