The Paton Welding Journal, 2019, #10, 48-53 pages
Journal The Paton Welding Journal
Publisher International Association «Welding»
ISSN 0957-798X (print)
Issue #10, 2019 (November)
Pages 48-53
Vacuum diffusion welding of γ-TiAl intermetallic with high-temperature nickel alloy with application of intermediate Al/Ni nanolayers
Iu.V. Falchenko, L.V. Petrushynets, T.V. Melnichenko, A.I. Ustinov and V.E. Fedorchuk
E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
Effect of structural characteristics and chemical composition of nanolayered interlayers based on Al–Ni system on formation of joints of g-TiAl-based alloy and high-temperature nickel alloy in vacuum diffusion welding was studied. It is shown that application of nanolayered clad interlayers ensures formation of a diffusion zone with monotonic change of the content of components, where the phase composition and micromechanical characteristics are determined by the interlayer chemical composition, as well as lowers the probability of brittle phase appearance in the butt joint. 18 Ref., 6 Tables, 7 Figures.
Keywords: vacuum diffusion welding, intermetallics, nanolayered interlayers
Received: 10.07.19
Published: 15.11.19
References
1. Bannykh, O.A., Povarova, K.B., Braslavskaya, G.S. et al. (1996) Mechanical properties of cast alloys γ-TiAl. Metallovedenie i Termich. Obrab. Metallov, 1, 11-14 [in Russian].
2. Polkin, I.S., Kolachev, B.A., Iliin, A.A. (1997) Titanium aluminides and alloys on their base. Tekhnologiya Lyogkikh Splavov, 3, 32-39 [in Russian].
3. Shorshorov, M.Kh., Erokhin, A.A., Chernyshova, T.A. (1973) Hot cracks in welding of high-temperature alloys. Moscow, Mashinostroenie [in Russian].
4. Zamkov, V.N., Velikoivanenko, E.A., Sabokar, V.K., Vrzhizhevsky, E.L. (2001) Selection of temperature of preheating of γ-titanium aluminide in electron beam welding. The Paton Welding J., 11, 17-20.
5. Peng He, Jun Wanga, Tiesong Lin, Haixin Li (2014) Effect of hydrogen on diffusion bonding of TiAl based intermetallics and Ni-based superalloy using hydrogenated Ti6Al4V interlayer. Int. J. Hydrog. Energy, 39, 1882-1887.
https://doi.org/10.1016/j.ijhydene.2013.11.0356. Li, Z.F., Wu, G.Q., Huang, Z., Ruan, Z.J. (2004) Diffusion bonding of laser surface modified TiAl alloy/Ni alloy. Materials Letters, 58, 3470-3473.
https://doi.org/10.1016/j.matlet.2004.07.0077. Ramos, A.S., Vieira, M.T., Simoes, S., Viana, F., Vieira, M.F. (2009) Joining of superalloys to intermetallics using nanolayers. Advanced Materials Research, 59, 225-229.
https://doi.org/10.4028/www.scientific.net/AMR.59.2258. Lyushinsky, A.V. (2001) Criteria of selection of intermediate layers in vacuum diffusion welding of dissimilar materials. Svarochn. Proizvodstvo, 5, 40-43 [in Russian].
9. Yushtin, A.N., Zamkov, V.N., Sabokar, V.K. et al. (2001) Pressure welding of intermetallic alloy γ-TiAl. The Paton Welding J., 1, 33-37.
10. Ramos, A.S., Vieira, M.T., Simoes, S., Viana, F., Vieira, M.F. (2010) Reaction-assisted diffusion bonding of advanced materials. Defect and Diffusion Forum, 297-301, 972-977.
https://doi.org/10.4028/www.scientific.net/DDF.297-301.97211. Ustinov, A.I., Falchenko, Yu.V., Ishchenko, A.Ya. et al. (2008) Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics, 8, 1043-1045.
https://doi.org/10.1016/j.intermet.2008.05.00212. Ustinov, A., Olikhovska, L., Melnichenko, T., Shyshkin, A. (2008) Effect of overall composition on thermally induced solid-state transformations in thick EB PVD Al/Ni multilayers. Surface and Coatings Technology, 16, 3832-3838.
https://doi.org/10.1016/j.surfcoat.2008.01.02413. Ustinov, A.I., Melnichenko, T.V., Shishkin, A.E. (2013) Deformational behavior of multilayer Ti/Al foils at heating under the conditions of continuously applied loads. Sovrem. Elektrometallurgiya, 4, 27-33 [in Russian].
14. Anikeev, A.I., Vereshchaka, A.A., Vereshchaka, A.S., Bublikov, Yu.I. (2015) Superdispersed hard alloys as a tool material for milling of hard-to-machine materials. Izv. Vuzov. Povolzhsky Region, 3, 152-162 [in Russian].
15. Ustinov, A.I., Olikhovskaya, L.A., Melnichenko, T.V. et al. (2008) Solid-phase reactions in heating of multilayer Al/Ti foils produced by electron beam deposition method. Advances in Electrometallurgy, 2, 19-26 [in Russian].
16. Firstov, S.A., Gorban, V.F., Pechkovsky, E.P., Mameka, N.A. (2007) Equation of indentation. Dopovidi Nats. Akademii Nauk Ukrainy, 12, 100-106 [in Russian].
17. Zeng, K., Schmid-Fetzer, R., Huneau, B. et al. (1999) The ternary system Al-Ni-Ti. Pt II: Thermodynamic assessment and experimental investigation of polythermal phase equilibria. Intermetallics, 12, 1347-1359.
https://doi.org/10.1016/S0966-9795(99)00055-218. Dyer, T.S., Munir, Z.A. (1995) The synthesis of nickel aluminides by multilayer self-propagating combustion. Metallurgical and Materials Transact. B, 26(3), 603-610.
https://doi.org/10.1007/BF02653881
Suggested Citation
Iu.V. Falchenko, L.V. Petrushynets, T.V. Melnichenko, A.I. Ustinov and V.E. Fedorchuk (2019) Vacuum diffusion welding of γ-TiAl intermetallic with high-temperature nickel alloy with application of intermediate Al/Ni nanolayers.
The Paton Welding J., 10, 48-53.