Eng
Ukr
Rus
Print

2019 №10 (06) DOI of Article
10.15407/as2019.10.07
2019 №10 (01)

Automatic Welding 2019 #10
Avtomaticheskaya Svarka (Automatic Welding), #10, 2019, pp. 54-61

Vacuum diffusion welding of γ-TiAl intermetallic with high-temperature nickel alloy with application of intermediate Al/Ni nanolayers

Iu.V. Falchenko, L.V. Petrushynets, T.V. Melnichenko, A.I. Ustinov, V.E. Fedorchuk


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03680, Kyiv. E-mail: office@paton.kiev.ua

Effect of structural characteristics and chemical composition of intermediate nanolayers based on Al-Ni system on formation of joints of γ-TiAl based alloy and high-temperature nickel alloy in vacuum diffusion welding was studied. It is shown that application of nanolayered clad interlayers ensures formation of a diffusion zone with monotonic change of the content of components, where the phase composition and micromechanical characteristics are determined by the interlayer chemical composition, as well as lowers the probability of brittle phase formation in the butt joint. 19 Ref., 6 Tabl., 7 Fig.
Keywords: vacuum diffusion welding, intermetallics, nanolayered interlayers

Published: 02.10.2019
Received: 10.07.2019

References

1. Bannykh, O.A., Povarova, K.B., Braslavskaya, G.S. et al. (1996) Mechanical properties of cast alloys γ-TiAl. Metallovedenie i Termich. Obrab. Metallov, 1, 11-14 [in Russian].
2. Polkin, I.S., Kolachev, B.A., Iliin, A.A. (1997) Titanium aluminides and alloys on their base. Tekhnologiya Lyogkikh Splavov, 3, 32-39 [in Russian].
3. Shorshorov, M.Kh., Erokhin, A.A., Chernyshova, T.A. (1973) Hot cracks in welding of high-temperature alloys. Moscow, Mashinostroenie [in Russian].
4. Zamkov, V.N., Velikoivanenko, E.A., Sabokar, V.K., Vrzhi­zhevsky, E.L. (2001) Selection of temperature of preheating of γ-titanium aluminide in electron beam welding. The Paton Welding J., 11, 17-20.
5. Peng He, Jun Wanga, Tiesong Lin, Haixin Li (2014) Effect of hydrogen on diffusion bonding of TiAl based intermetallics and Ni-based superalloy using hydrogenated Ti6Al4V interlayer. Int. J. Hydrog. Energy, 39, 1882-1887. https://doi.org/10.1016/j.ijhydene.2013.11.035
6. Li, Z.F., Wu, G.Q., Huang, Z., Ruan, Z.J. (2004) Diffusion bonding of laser surface modified TiAl alloy/Ni alloy. Materials Letters, 58, 3470-3473. https://doi.org/10.1016/j.matlet.2004.07.007
7. Ramos, A.S., Vieira, M.T., Simoes, S., Viana, F., Vieira, M.F. (2009) Joining of superalloys to intermetallics using nanolayers. Advanced Materials Research, 59, 225-229. https://doi.org/10.4028/www.scientific.net/AMR.59.225
8. Lyushinsky, A.V. (2001) Criteria of selection of intermediate layers in vacuum diffusion welding of dissimilar materials. Svarochn. Proizvodstvo, 5, 40-43 [in Russian].
9. Yushtin, A.N., Zamkov, V.N., Sabokar, V.K. et al. (2001) Pressure welding of intermetallic alloy γ-TiAl. The Paton Welding J., 1, 33-37.
10. Ramos, A.S., Vieira, M.T., Simoes, S., Viana, F., Vieira, M.F. (2010) Reaction-assisted diffusion bonding of advanced materials. Defect and Diffusion Forum, 297-301, 972-977. https://doi.org/10.4028/www.scientific.net/DDF.297-301.972
11. Ustinov, A.I., Falchenko, Yu.V., Ishchenko, A.Ya. et al. (2008) Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics, 8, 1043-1045. https://doi.org/10.1016/j.intermet.2008.05.002
12. Ustinov, A., Olikhovska, L., Melnichenko, T., Shyshkin, A. (2008) Effect of overall composition on thermally induced solid-state transformations in thick EB PVD Al/Ni multilayers. Surface and Coatings Technology, 16, 3832-3838. https://doi.org/10.1016/j.surfcoat.2008.01.024
13. Ustinov, A.I., Melnichenko, T.V., Shishkin, A.E. (2013) Deformational behavior of multilayer Ti/Al foils at heating under the conditions of continuously applied loads. Sovrem. Elektrometallurgiya, 4, 27-33 [in Russian].
14. Anikeev, A.I., Vereshchaka, A.A., Vereshchaka, A.S., Bublikov, Yu.I. (2015) Superdispersed hard alloys as a tool material for milling of hard-to-machine materials. Izv. Vuzov. Povolzhsky Region, 3, 152-162 [in Russian].
15. Ustinov, A.I., Olikhovskaya, L.A., Melnichenko, T.V. et al. (2008) Solid-phase reactions in heating of multilayer Al/Ti foils produced by electron beam deposition method. Advances in Electrometallurgy, 2, 19-26 [in Russian].
16. Firstov, S.A., Gorban, V.F., Pechkovsky, E.P., Mameka, N.A. (2007) Equation of indentation. Dopovidi Nats. Akademii Nauk Ukrainy, 12, 100-106 [in Russian].
17. Zeng, K., Schmid-Fetzer, R., Huneau, B. et al. (1999) The ternary system Al-Ni-Ti. Pt II: Thermodynamic assessment and experimental investigation of polythermal phase equilibria. Intermetallics, 12, 1347-1359. https://doi.org/10.1016/S0966-9795(99)00055-2
18. Dyer, T.S., Munir, Z.A. (1995) The synthesis of nickel aluminides by multilayer self-propagating combustion. Metallurgical and Materials Transact. B, 26(3), 603-610. https://doi.org/10.1007/BF02653881