Eng
Ukr
Rus
Print

2021 №06 (01) DOI of Article
10.37434/tpwj2021.06.02
2021 №06 (03)

The Paton Welding Journal 2021 #06
TPWJ, 2021, #6, 12-18 pages

Welding dissimilar high-strength nickel alloys in poly- and single-crystal combinations

Authors
K.A. Yushchenko, B.O. Zaderii, I.S. Gakh and G.V. Zviagintseva
E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Abstract
The paper deals with an important question, which arises at designing and improvement of the structure of gas turbine engines, in order to increase the operating parameters, cost characteristics and competitiveness: welding of dissimilar, multistructural high-temperature materials. Weldability assessment by the criteria of strength and crack resistance was performed. The main questions arising in welding high-temperature nickel alloys in dissimilar combinations: welding method, features of weld formation, chemical composition and structure, cracking susceptibility of welded joints and mechanical properties, are considered in the case of welding typical high-temperature materials widely used in aircraft engine building, namely EI698VD and ZhS26VI alloys with polycrystal and single-crystal structure, respectively. Methods to control the technological strength are established. Mechanical properties of welded joints produced in the temperature range of 20–1000 °C by different technology schemes are determined. 15 Ref., 5 Table, 7 Figures.
Keywords: high-temperature nickel alloys, welding of dissimilar alloys, weld formation, chemical composition, single-crystal and polycrystal structure, crack resistance, properties

Received 19.04.2021

References

1. Bratukhin, A.G. (2001) Modern aviation materials, technological and functional peculiarities. Moscow, AviaTekhInform 21st century [in Russian].
2. Sims, C., Stollof, N., Hagel, W. (1995) Superalloys II. Heat-resistant materials for aerospace and industrial power plants. Ed. by R.E. Shalin. Moscow, Metallurgiya [in Russian].
3. Stroganov, G.B., Chepkin, V.M. (2000) Cast heat-resistant alloys for gas turbines. Moscow, MATI [in Russian].
4. Morochko, V.P., Sorokin, L.I., Zybko, N.Yu. (1980) Weldability classification of high-temperature nickel alloys in EBM. Avtomatich. Svarka, 12, 42–44 [in Russian].
5. Sorokin, L.I. (2003) Evaluation of cracking resistance in welding and heat treatment of high-temperature nickel alloys (Review). Svarochn. Proizvodstvo, 7, 11–18 [in Russian].
6. XF9-1, the world’s best standards fighter engine, has been completed. Japan’s Military Technology, Interview with the Developer (Pt 1‒2). BLOGOS (in Japanese). Retrieved 31 August 2019.
7. Kopelev, S.Z., Galkin, M.N., Kharin, A.A., Shevchenko, I.V. (1993) Thermal and hydraulic characteristics of cooled gas turbine blades. Moscow, Mashinostroenie [in Russian].
8. Bazileva, O.A., Arginbaeva, E.G., Turenko, E.O. (2012) Heat-resistant cast intermetallic alloys. In: Aviation Materials and Technologies. Moscow, VIAM, 57‒60 [in Russian].
9. Kablov, E.N. (2001) Cast blades of gas-turbine engines (alloys, technology, coatings). Moscow, MISIS [in Russian].
10. Sorokin, L.I. (1999) Stresses and cracks in welding and heat treatment of high-temperature nickel alloys. Svarochn. Proizvodstvo, 2, 11–17 [in Russian].
11. Yushchenko, K.A., Zadery, B.A., Zvyagintseva, A.V. et al. (2008) Sensitivity to cracking and structural changes in EBW of single crystals of heat-resistant nickel alloys. The Paton Welding J., 2, 6‒13.
12. Yushchenko, K.A., Zadery, B.A., Karasevskaya, O.P. et al. (2006) Structural changes during welding process of single crystals of nickel supealloys in crystallographically asymmetric location of welding pool. Novejshie Tekhnologii, 28(11), 1509–1527 [in Russian].
13. Bychkov, V.M., Selivanov, A.S., Medvedev, A.Yu. et al. (2012) Investigation of weldability of high-temperature nickel alloy EP742 by linear friction welding method. Vestnik UGATU, 16(7), 52, 112–116.
14. Wiednig C. (2014) Dissimilar electron beam welding of nickel base alloy 625 and 9 % Cr steel. Procedia Engineering, 86, 184-194. https://core.ac.uk/download/pdf/82415005.pdf https://doi.org/10.1016/j.proeng.2014.11.027
15. Lippold, J.C., Cotecki, D.J. (2005) Welding metallurgy and weldability of stainless steels. Wiley interscience. A J.Wiley@ sons inc. Publ.

Advertising in this issue: