Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №06 (01) DOI of Article
2021 №06 (03)

Automatic Welding 2021 #06
Avtomaticheskaya Svarka (Automatic Welding), #6, 2021, pp. 13-20

Welding dissimilar high-strength nickel alloys in poly- and single-crystal combinations

K.A. Yushchenko, B.O. Zaderii, I.S. Gakh, G.V. Zvyagintseva
E.O. Paton Electric Welding Institute. 11 Kazymyr Malevych Str., 03150 Kyiv, Ukraine. E-mail: office@paton.kiev.ua

The paper deals with an important question which arises at designing and improvement of the structures of gas turbine engines, in order to increase the operating parameters, cost characteristics and competitiveness – welding of dissimilar, multi-structural high-temperature materials. Weldability assessment by the criteria of strength and crack resistance was performed. The main questions, arising in welding high-temperature nickel alloys in dissimilar combinations: welding method, features of weld formation, chemical composition and structure, cracking susceptibility of welded joints and mechanical properties, are considered in the case of welding typical high-temperature materials widely used in aircraft engine building, namely EI698VD and ZhS26VI alloys with polycrystal and single-crystal structure, respectively. Methods to control the technological strength are established. Mechanical properties of welded joints produced in the temperature range of 20…1000 °С by different technology schemes, are determined. 15 Ref., 5 Tabl., 7 Fig.
Keywords: high-temperature nickel alloys, welding of dissimilar alloys, weld formation, chemical composition, single-crystal and polycrystal structure, crack resistance, properties.

Received: 19.04.2021


1. Bratukhin, A.G. (2001) Modern aviation materials, technological and functional peculiarities. Moscow, AviaTekhInform 21st century [in Russian].
2. Sims, C., Stollof, N., Hagel, W. (1995) Superalloys II. Heat-resistant materials for aerospace and industrial power plants. Ed. by R.E. Shalin. Moscow, Metallurgiya [in Russian].
3. Stroganov, G.B., Chepkin, V.M. (2000) Cast heat-resistant alloys for gas turbines. Moscow, MATI [in Russian].
4. Morochko, V.P., Sorokin, L.I., Zybko, N.Yu. (1980) Weldability classification of high-temperature nickel alloys in EBM. Avtomatich. Svarka, 12, 42–44 [in Russian].
5. Sorokin, L.I. (2003) Evaluation of cracking resistance in welding and heat treatment of high-temperature nickel alloys (Review). Svarochn. Proizvodstvo, 7, 11–18 [in Russian].
6. XF9-1, the world’s best standards fighter engine, has been completed. Japan’s Military Technology, Interview with the Developer (Pt. 1/2). BLOGOS (in Japanese). Retrieved 31 August 2019.
7. Kopelev, S.Z., Galkin, M.N., Kharin, A.A., Shevchenko, I.V. (1993) Thermal and hydraulic characteristics of cooled gas turbine blades. Moscow, Mashinostroenie [in Russian].
8. Bazileva, O.A., Arginbaeva, E.G., Turenko, E.O. (2012) Heat-resistant cast intermetallic alloys. In: Aviation Materials and Technologies. Moscow, VIAM, 57-60 [in Russian].
9. Kablov, E.N. (2001) Cast blades of gas-turbines engines (alloys, technology, coatings). Moscow, MISIS [in Russian].
10. Sorokin, L.I. (1999) Stresses and cracks in welding and heat treatment of high-temperature nickel alloys. Svarochn. Proizvodstvo, 2, 11–17 [in Russian].
11. Yushchenko, K.A., Zadery, B.A., Zvyagintseva, A.V. et al. (2008) Sensitivity to cracking and structural changes in EBW of single crystals of heat-resistant nickel alloys. The Paton Welding J., 2, 6-13.
12. Yushchenko, K.A., Zadery, B.A., Karasevskaya, O.P. (2006) Structural changes during welding process of single crystals of nickel supealloys in crystallographically asymmetric location of welding pool. Novejshie Tekhnologii, 28(11), 1509–1527 [in Russian].
13. Bychkov, V.M., Selivanov, A.S., Medvedev, A.Yu. et al. (2012) Investigation of weldability of high-temperature nickel alloy EP742 by linear friction method. Vestnik UGATU, 16(7), 52, 112–116.
14. Wiednig C. (2014) Dissimilar electron beam welding of nickel base alloy 625 and 9 % Cr steel. Procedia Engineering, 86, 184-194. https://core.ac.uk/download/pdf/82415005.pdf https://doi.org/10.1016/j.proeng.2014.11.027
15. Lippold, J.C., Cotecki, D.J. (2005) Welding metallurgy and weldability of stainless steels. Wiley interscience. A J.Wiley@sons inc. Publ.

Advertising in this issue: