The Paton Welding Journal, 2022, #2, 33-36 pages
Studies of coatings produced by high-velocity oxy-fuel spraying using cermet powder based on FeMoNiCrB amorphizing alloy
Yu.S. Borysov, N.V. Vihilianska, I.A. Demianov, A.P. Murashov, O.P. Gryshchenko
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: borisov@paton.kiev.ua
Abstract
The process of producing composite powders based on amorphizing Fe-alloy with the additives of refractory compounds by the
method of high-velocity oxy-fuel spraying was investigated. For spraying composite powders FeMoNiCrB‒(Ti, Cr)C, FeMoNiCrB‒
ZrB2 were used, produced from a mixture of powders of the compositions by mechanical alloying in a planetary mill.
As a result of spraying, dense coatings (porosity is less than 3 %) were produced, which were formed from partially deformed
particles with a multiphase structure and a uniform distribution of structural components. The results of X-ray diffraction
phase analysis indicate the formation of amorphous-crystalline structure in the produced composite coatings. On the X-ray
patterns, the maximum peak amplitude from the crystalline phase against the background of the amorphous halo corresponds
to the TiCN phase in the coating FeMoNiCrB‒(Ti, Cr)C and the ZrB2 phase in the FeMoNiCrB‒ZrB coating. The size of the
measured microhardness for the composite coating FeMoNiCrB‒(Ti, Cr)C amounts to — 5.5±0.25 GPa, and for the coating
FeMoNiCrB‒ZrB2 it is 5.9±0.29 GPa.
Keywords: high-velocity oxy-fuel spraying, amorphous phase, amorphous iron-based alloy, composite powder, composite
coating, microstructure, microhardness
Received:22.11.2021
Accepted: 31.03.2022
References
1. Kim, S.W., Namkung, J., Kwon, O. (2012). Manufacture and Industrial Application of Fe-Based Metallic Glasses. Materials Science Forum, 706-709, 1324-1330.
https://doi.org/10.4028/www.scientific.net/MSF.706-709.13242. Yuting, D., Guofeng, M. (2020). Research Progress of Febased Amorphous/Nanocrystalline Alloys. IOP Conference Series: Earth and Environmental Science, 565, 012048.
https://doi.org/10.1088/1755-1315/565/1/0120483. Li, H.X., Lu, Z.C., Wang, S.L. et al. (2019) Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Progress in Materials Science, 103, 235-318.
https://doi.org/10.1016/j.pmatsci.2019.01.0034. Guo, S.F., Liu, L., Li, N., Li, Y. (2010) Fe-based bulk metallic glass matrix composite with large plasticity. Scripta Materialia, 62(6), 329-332.
https://doi.org/10.1016/j.scriptamat.2009.10.0245. Blink, J., Farmer, J., Choi, J., Saw, C. (2009) Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings. Metallurgical and Materials Transactions A, 40, 1344-1354.
https://doi.org/10.1007/s11661-009-9830-46. Branagan, D.J., et al. (2006) Wear and Corrosion Resistant Amorphous/Nanostructured Steel Coatings for Replacement of Electrolytic Hard Chromium, ITSC. In: Marple B. (ed.) Proc. of the 2006 ITSC, ASM International, Materials Park, OH.
https://doi.org/10.2172/8849577. Lu, W., Wu, Y., Zhang, J. et al. (2010) Microstructure and Corrosion Resistance of Plasma Sprayed Fe-Based Alloy Coating as an Alternative to Hard Chromium. Journal of Thermal Spray Technology, 20(5), 1063-1070.
https://doi.org/10.1007/s11666-010-9611-z8. Artemchuk, V.V., Astakhov, E.A. (2012) Structure and properties of amorphous renewable iron-based coatings. Visnyk NTU KhPI. Series: New Solutions in Modern Technologies, 26, 10-15 [in Ukrainian].
9. Cheng, J.B., Liang, X.B., Chen, Y.X. et al. (2012) High- Temperature Erosion Resistance of FeBSiNb Amorphous Coatings Deposited by Arc Spraying for Boiler Applications. Journal of Thermal Spray Technology, 22(5), 820-827.
https://doi.org/10.1007/s11666-012-9876-510. Yugeswaran, S., Kobayashi, A., Suresh, K., Subramanian, B. (2013) Characterization of gas tunnel type plasma sprayed TiN reinforced Fe-based metallic glass coatings. Journal of Alloys and Compounds, 551, 168-175.
https://doi.org/10.1016/j.jallcom.2012.09.11111. Yoon, S., Kim, J., Kim, B.D., Lee, C. (2010) Tribological behavior of B4C reinforced Fe-base bulk metallic glass composite coating. Surface and Coatings Technology, 205(7), 1962-1968.
https://doi.org/10.1016/j.surfcoat.2010.08.07812. Yasir, M., Zhang, C., Wang, W. et al. (2015) Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution. Materials & Design, 88, 207-213.
https://doi.org/10.1016/j.matdes.2015.08.14213. Lampke, T., Wielage, B., Pokhmurska, H. et al. (2011) Development of particle-reinforced nanostructured ironbased composite alloys for thermal spraying. Surface and Coatings Technology, 205(12), 3671-3676.
https://doi.org/10.1016/j.surfcoat.2011.01.00314. Wang, S., Cheng, J., Yi, S.-H., Ke, L. (2014) Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying. Transactions of Nonferrous Metals Society of China, 24(1), 146-151.
https://doi.org/10.1016/S1003-6326(14)63040-515. Borysov, Yu.S., Borysova, A.L., Burlachenko, O.M. et al. (2021) Composite powders based on FeMoNiCrB amorphizing alloy with additives of refractory compounds for thermal spraying of coatings. The Paton Welding J., 11, 38-47.
https://doi.org/10.37434/as2021.11.08
Suggested Citation
Yu.S. Borysov, N.V. Vihilianska, I.A. Demianov, A.P. Murashov, O.P. Gryshchenko (2022) Studies of coatings produced by high-velocity oxy-fuel spraying using cermet powder based on FeMoNiCrB amorphizing alloy.
The Paton Welding J., 02, 33-36.