Eng
Ukr
Rus
Печать
2015 №04 (04) DOI of Article
10.15407/sem2015.04.05
2015 №04 (06)

Современная электрометаллургия 2015 #04
SEM, 2015, #4, 31-37 pages
 
Получение прогнозирующих математических моделей для расчета термодинамических параметров литейных жаропрочных никелевых сплавов


Journal                    Современная электрометаллургия
Publisher                 International Association «Welding»
ISSN                      2415-8445 (print)
Issue                       № 4, 2015 (December)
Pages                      31-37
 
 
Authors
С.В. Гайдук1, В.В. Кононов1, В.В. Куренкова2

1Запорожский национальный технический университет (ЗНТУ). 69063, г. Запорожье, ул. Жуковского, 64. E-mail: rector@zntu.edu.ua
2ООО «Патон Турбайн Текнолоджиз». 03028, г. Киев, ул. Ракетная, 26. E-mail: VKurenkova@patontt.com
 
 
Abstract
 
Проанализированы и обработаны экспериментальные данные термодинамических параметров широкого ряда отечественных и зарубежных литейных жаропрочных никелевых сплавов пяти поколений. Получены математические регрессионные модели для прогнозирующих расчетов термодинамических параметров, которые могут использоваться при разработке новых перспективных сплавов или модернизации существующих промышленных сплавов. Библиогр. 25, табл. 2, ил. 5.
 
Ключевые слова: литейные жаропрочные никелевые сплавы; система легирования; термодинамические параметры; математическая регрессионная модель
 
Received:                21.10.15
Published:               25.12.15
 
 
References
  1. Logunov, A.V., Shmotin, Yu.N., Danilov, D.V. (2014) Methodological bases of automatic designing of heat-resistant alloys on nickel base. P. I. Teknologiya Metallov, 5, 3–9.
2. Logunov, A.V., Shmotin, Yu.N., Danilov, D.V. (2014) Methodological bases of automatic designing of heat-resistant alloys on nickel base. P. II. Ibid., 6, 3–10.
3. 2. Logunov, A.V., Shmotin, Yu.N., Danilov, D.V. (2014) Methodological bases of automatic designing of heat-resistant alloys on nickel base. P. III. Ibid., 7, 3–11.
4. Kishkin, S.T., Stroganov, G.B., Logunov, A.V. (1987) Foundry heat-resistant alloys on nickel base. Moscow, Mashinostroenie.
5. Paton, B.E., Stroganov, G.B., Kishkin, S.T. et al. (1987) Heat resistance of foundry nickel alloys and their protection from oxidation. Kiev, Naukova Dumka.
6. Shalin, R.E., Svetlov, I.L., Kachanov, E.V et al. (1997) Single crystals of nickel heat-resistant alloys. Moscow, Mashinostroenie.
7. Kablov, E.N., Golubovsky, E.R. (1998) Heat resistance of nickel alloys. Moscow, Mashinostroenie.
8. Kablov, E.N. (2001) Cast blades of gas turbine engines (alloys, technology, coatings). Moscow, MISIS.
9. Kablov, E.N. (2006) Foundry heat-resistant alloys. Effect of S.T. Kishkin: Coll.: In commemoration of the 100th birthday anniversary of S.T. Kishkin. Moscow, Nauka.
10. Kablov, E.N. (2007) 75years. Aviation materials. Selected works of "VIAM", 1932–2007. Jubilee Sci.-Techn. Coll. Moscow, VIAM.
11. Kotsoradis, D., Felix, P., Fishmayster, Ch. et al. (1981) Heat-resistant alloys for gas turbines. Moscow, Metallurgiya.
12. Seems, Ch.T., Stoloff, N.S., Hagel, U.K. (1995) Superalloys II. Heat-resistant materials for aerospace and industrial power equipment. Moscow, Metallurgiya.
13. Morozova, G.I. (1991) Regularity of formation of chemical composition of ??/?-matrix of multi-component nickel alloys. DAN SSSR, 320, 6, 1413–1416.
14. Morozova, G.I., Timofeeva, O.B., Petrushin, N.V. (2009) Peculiarities of structure and phase composition of high-rhenium nickel heat-resistant alloy. Metallovedenie i Termicheskaya Obrabotka Metallov, 2, 10–16.
15. Erickson, G.L. (1996) The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application. Superalloys, 45–62. https://doi.org/10.7449/1996/Superalloys_1996_45_52
16. Zhukov, A.A., Smirnova, O.A. (2004) Evaluation of temperature of full dissolution of ??-phase of heat-resistant nickel alloys on base of analysis of binary diagrams of state. Zagotovitelnye Proizvodstva v Mashinostroenii, 11, 44–47.
17. Zhukov, A.A., Smirnova, O.A. (2005) Evaluation of serviceability of heat-resistant alloys for GTE and GTU. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 10, 60–66.
18. Saunders, N., Fahrmann, M., Small, C.J. (2000) The application of calphad calculations to Ni-based superalloys. Superalloys, TMS, 803–811. https://doi.org/10.7449/2000/Superalloys_2000_803_811
19. Saunders, N. (1996) phase diagram calculations for Ni-based superalloys. Ibid., 101–110. https://doi.org/10.7449/1996/Superalloys_1996_101_110
20. Small, C.J., Saunders, N. (1999) The application of Calphad techniques in the development of a new gas-turbine disk alloy. Mat. Research Soc. Bull., April., 22. https://doi.org/10.1557/S0883769400052143
21. Saunders, N. (1996) Phase-diagram calculations for Ni-based superalloys. Superalloys, TMS, 101–110. https://doi.org/10.7449/1996/Superalloys_1996_101_110
22. Belikov, S.B., Gajduk, S.V., Kononov, V.V. (2004) About tantalum effect on characteristic points of heat-resistant nickel alloys. Vestnik Dvigatelestroeniya, 3, 99–102.
23. Gajduk, S.V. (2004) Peculiarities of tantalum effect on structure and properties of nickel alloys. Novi Materialy i Tekhnologii v Metallurgii ta Mashinobuduvanni, 1, 16–19 [in Ukrainian].
24. Vertogradsky, V.A., Rykova, T.P. (1984) Investigation of phase transformations in alloys of ZhS type by DTA method. High-temperature and heat-resistant steels and alloys on nickel base. Moscow, Nauka, 223–227.
25. Fippen, J.S., Sparks, P.B. (1979) Using differential thermal analysis to determine phase change temperatures. Metal Progr., 4, 56–59
>