Print

2010 №01 (11) 2010 №01 (02)

The Paton Welding Journal 2010 #01
TPWJ, 2010, #1, 2-6 pages
 
NUMERICAL ANALYSIS OF THE PROCESSES OF HEATING AND CONVECTIVE EVAPORATION OF METAL IN PULSE LASER TREATMENT


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 1, 2010 (January)
Pages                       2-6
 
 
Authors
I.V. KRIVTSUN, I.L. SEMYONOV and V.F. DEMCHENKO

E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
 
 
Abstract
Mathematical model of the processes of heating, melting and evaporation of metal under the effect of a focused laser beam is suggested. The model allows describing thermal processes in the bulk of metal and gas-dynamic processes in a metal vapour flow occurring in laser treatment by using pulse lasers. Numerical analysis was conducted to study the processes of heating and convective evaporation of metal with a millisecond pulse of the Nd:YAG-laser beam affecting a low-carbon steel sample.
 
 
Keywords: pulse laser, laser radiation, metal, temperature field, evaporation, metal vapour, Knudsen layer, gas-dynamic processes, mathematical model
 
 
Received:                ??.??.??
Published:                28.01.10
 
 
References
1. Arutyunyan, R.V., Baranov, V.Yu., Bolshov, L.A. et al. (1989) Effect of laser radiation on materials. Moscow: Nauka.
2. Vedenov, A.A., Gladush, G.G. (1985) Physical processes in laser treatment of materials. Moscow: Energoatomizdat.
3. Dulie, U. (1986) Laser technology and analysis of materials. Moscow: Mir.
4. Anisimov, S.I., Imas, Ya.A., Romanov, G.S. et al. (1970) Effect of high radiation power on metals. Moscow: Nauka.
5. Batarov, V.A., Bunkin, F.V., Prokhorov, A.M. et al. (1970) Stationary shock wave generated in stationary metal evaporation under the effect of laser radiation. Pisma v Zhurnal Eksperim. i Teoret. Fiziki, 11, 113-118.
6. Gusarov, A.V., Gnedovets, A.G., Smurov, I. (2000) Gas dynamics of laser ablation: Influence of ambient atmosphere. J. Appl. Phys., 88, 4352-4364.
7. Afanasiev, Yu.V., Belenov, E.M., Krokhin, O.N. et al. (1969) Ionisation processes in laser plasma. Pisma v Zhurnal Eksperim. i Teoret. Fiziki, 10, 553-557.
8. Vorobiov, V.S. (1993) Plasma generated in interaction of laser radiation with solid targets. Ukr. Fizich. Zhurnal, 163(12), 51-82.
9. Knight, C.J. (1979) Theoretical modelling of quick surface evaporation in presence of counterpressure. Raketnaya Tekhnika i Kosmonavtika, 5, 81-86.
10. Peacemen, D.W., Rachford, H.H. (1955) The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math., 3, 28-41.
11. Kulikovsky, A.G., Pogorelov, N.V., Semyonov, A.Yu. (2001) Mathematical problems in numerical solution of hyperbolic equation systems. Moscow: Fizmatlit.
12. Kirichenko, V., Gryaznov, N., Krivtsun, I. (2008) Experimental facility for research on pulsed laser-microplasma welding. The Paton Welding J., 8, 26-30.
13. Hu, J., Tsai, H.L. (2007) Heat and mass transfer in gas metal arc welding. Pt 1. The arc. Int. J. Heat and Mass Transfer, 50, 833-846.
14. Kikuo, U. (1972) Reflectivity of metals at high temperatures. J. Appl. Phys., 43(5), 2376-2383.
15. Ordal, M.A., Long, L.L., Bell, R.J. et al. (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared. Appl. Opt., 22(7), 1099-1119.
16. Miller, J. (1969) Optical properties of liquid metals at high temperatures. Phil. Mag., 20(12), 1115-1132.