Eng
Ukr
Rus
Print
2017 №08 (03) DOI of Article
10.15407/as2017.08.04
2017 №08 (05)

Automatic Welding 2017 #08
Avtomaticheskaya Svarka (Automatic Welding), #8, 2017, pp. 29-36
 
Investigation of process of formation of structure and properties in magnetron nanolayer FeAl-coatings


 
 
Authors
Yu.S. Borisov1, M.V. Kuznetsov1, B.T. Tkachenko1, A.V. Volos1, V.G. Zadoya1, L.M. Kapitanchuk1, A.I. Gudymenko2 and V.F. Gorban3
1E.O. Paton Electric Welding Institute, NASU 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
2V.E. Lashkaryov Institute of Semiconductor Physics, NASU 45 Nauki Ave., 03028, Kiev, Ukraine. E-mail: mickle@semicond.kiev.ua
3I.M. Frantsevich Institute of Problems of Materials Science, NASU 3 Akad. Krzhizhanovsky, 03142, Kiev, Ukraine. E-mail: post@ipms.kiev.ua
 
Abstract
The work is dedicated to investigation of process of formation of Fe-Al coating with regulated composition on substrates of 08Kh18N10T steel at mutual magnetron sputtering of composite Al + Fe target with heated above the Curie point (768 °C) insert of St.3 and aluminum target. Application of a system of cyclic substrate movement in the active zones of magnetron operation allowed forming a nanolayer structure of coatings with Al — 1.3–1.9 and Fe — 1.6 nm nanolayer thickness. The coatings were investigated using Auger spectrometry, X-ray diffraction and microindentation. It is determined that 3 mm FeAl-coatings containing 39.6 and 54.6 at.% of Al are an ordered B2 — FeAl phase consisting of 0.135–0.173 and 0.293–0.335 mm size grains, formed from nanocrystallites of 7 and 22 nm, respectively. 17 Ref., 4 Tables, 6 Figures.
 
Keywords: magnetron sputtering, nanolayer structure, FeAl-coatings, regulated layer
 
 
Received:                13.06.17
Published:               01.08.17
 
 
References
  1. Cinca, N., Guilemany, J.M. (2012) Thermal spraying of transition metal aluminides: An overview. Intermetallics, 24, 60–72. https://doi.org/10.1016/j.intermet.2012.01.020
  2. Cinca, N., Guilemany, J.M. (2013) An overview of intermetallics research and application: Status of thermal spray coatings. of Materials Research and Technology, 2(1), 1–11. https://doi.org/10.1016/j.jmrt.2013.03.013
  3. Paldey, S., Deevi, S.C. (2003) Cathodic arc deposited FeAl coatings: Properties and oxidation characteristics. Sci & Engin., A355, 208–215. https://doi.org/10.1016/S0921-5093(03)00076-5
  4. Arcon, I., Mozetic, M., Zalar, A. et al. (2003) EXAFS study of ion beam mixed Fe/Al multilayers. Nuclear Instruments and Methods in Physics Research, B199, 222–226. https://doi.org/10.1016/S0168-583X(02)01424-6
  5. Brajpuriya, R., Tripathi, S., Chaudhari, S.M. (2005) Thermally induced changes in magnetic, transport and electronic properties Fe/Al multilayers. Solid State Communications, 134, 479–484. https://doi.org/10.1016/j.ssc.2005.02.013
  6. Levin, A.A., Meyer, D.C., Paufler, P. (2000) Structural modifications of laser deposited Fe–Al multilayers due to thermal treatment. of Alloys and Compounds, 297, 59–67. https://doi.org/10.1016/S0925-8388(99)00615-5
  7. Levin, A.A., Meyer, D.C., Gorbunov, A. et al. (2001) Comparative study of interfaces of Fe–Al multilayers prepared by direct and crossed-beam pulsed laser deposition. Thin Solid Films, 47–56. https://doi.org/10.1016/S0040-6090(01)00958-0
  8. Levin, A.A., Meyer, D.C., Paufler, P. et al. (2001) Thermally stimulated solid state reactions in Fe-Al multilayers prepared by pulsed laser deposition. of Alloys and Compounds, 320, 114–125. https://doi.org/10.1016/S0925-8388(01)00941-0
  9. Paldey, S., Deevi, S.C. (2003) Single layer and multilayer wear resistant coatings of (Ti, Al)N: A review. Sci. & Engin., A342, 58–79. https://doi.org/10.1016/S0921-5093(02)00259-9
  10. Zhenya, L., Wei, G. (1998) Oxidation behaviour of FeAl intermetallic coatings produced by magnetron sputter deposition. Scripta Materialia, 39, 1497–1502. https://doi.org/10.1016/S1359-6462(98)00360-1
  11. Sanchette, F., Billard, A. (2001) Main feature of magnetron sputtered aluminium-transition metal alloy coatings. and Coat. Technol., 142–144, 218–224. https://doi.org/10.1016/S0257-8972(01)01197-5
  12. Cherif, S.M., Boussigne, K., Boussigne, Y. (2007) Growth and magnetic study of sputtered Fe/Al multilayers. Sci. & Engin., 138, 16–21. https://doi.org/10.1016/j.mseb.2006.12.009
  13. Marchenko, I.G., Marchenko, I.I., Neklyudov, I.M. (2004) Computer modeling of vacuum deposition of niobium films. Visnyk Kharkivskogo Universytetu, 628, 93–98.
  14. Tomal, V.S., Kasinsky, N.K., Ivanov, I.V. (2013) Repeatability of properties of optical vacuum coatings. Tekhnologii. Instrumenty, 18, 75–77.
  15. Ignatovich, S.R., Zakiev, I.M. (2009) Universal micro-nanoindentometer Mikron-gamma. Laboratoriya, 77(1), 61–67.
  16. Gorban, V.F., Zakiev, I.M., Sarzhan, G.F. (2016) Comparative characteristics of friction of high entropic mononitride coatings. Trenie i Iznos, 37(3), 340–344.
  17. Gorban, V.F., Mameka, N.A., Pechkovsky, E.P. et al. (2006) Indentification of structural state of materials by method of automatic indentation. In: Kharkovskaya Nanotekhnologicheskaya Assambleya: Transact., 1, 52–55.

>