Eng
Ukr
Rus
Print

2018 №09 (01) DOI of Article
10.15407/as2018.09.02
2018 №09 (03)

Automatic Welding 2018 #09
Avtomaticheskaya Svarka (Automatic Welding), #9, 2018, pp. 9-16

Effect of the modes of pulsed-arc welding on the parameters of weld and HAZ metal of welded joints made with Sv-08Kh20N9G7T wire

V.D. Poznyakov, A. V. Zavdoveev, A. A. Gayvoronsky, A. M. Denisenko, A. A. Maksymenko


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail:office@paton.kiev.ua

Pulsed arc welding is characterized with periodically varying arc power and due to its peculiarities allows solving complex technological issues in development of unique structures, rising efficiency of welding processes, deposit corrosion-resistant alloys on steel. Up to the moment there are a great number of producers of welding equipment introducing in their production the ideas of application of pulsed welding. However, data on effect of pulsed arc welding on the welding thermal cycles have odd nature and, therefore, it is difficult to carry out comparison between the thermal cycles typical for stationary and pulsed arc welding. In welding of high-carbon steels there is a problem of reduction of weld metal stirring with a base metal and due to this increase of welded joint cold crack resistance. Successful application of pulsed arc welding for solution of the problems mentioned above provoked a need in the comparative investigations of effect of modes of pulsed arc welding on parameters of the welds, HAZ and welding thermal cycles in comparison with stationary arc welding produced with high-alloy welding consumables. This was the main aim of the investigations, the results of which are given in this paper. Ref. 31, Fig. 8.
Keywords: pulsed arc welding, welding with pulsating arc, welding thermal cycle, heat affected zone, high-alloy welding consumables

Received: 05.07.2018
Published: 20.09.2018

References
  1. Zajtsev, M.P. Electric arc welding method of  sheet steel.  USSR author’s cert.  100898, 450109/К-578 [in Russian].
  2. https://ru.wikipedia.org/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D0%BD%D0%B0%D1%8F_%D1%81%D0%B2%D0%B0%D1%80%D0%BA%D0%B0#cite_note-2
  3. Zaruba, I.I., Lebedev, V.K., Shejko, P.P. (1968) Welding with modulated current. Svarka, 11, 35–40 [in Russian].
  4. Lenivkin, V.A., Dyurgerov, N.G., Sagirov, Kh.N. et al. (1989) Technological properties of welding arc in shielding gases. Moscow, Mashinostroenie [in Russian].
  5. Potapievsky, A.G. (2007) Consumable electrode welding in shielding gases. Pt.1: Welding in active gases. 2nd Ed. Kiev, Ekotekhnologiya [in Russian].
  6. Paton, B.E., Potapievsky, A.G., Podola, N.V. (1964) Consumable electrode pulsed-arc welding with programmable control of  Avtomatich. Svarka, 1, 2–6 [in Russian].
  7. Lashchenko, G.I. (2006) Methods of metal arc welding. Kiev, Ekotekhnologiya [in Russian].
  8. Voropaj, N.M., Ilyushenko, V.M., Lankin, Yu.N. (1999) Peculiarities of pulsed-arc welding with synergetic control of mode parameters. Svarka, 6, 26–32 [in Russian].
  9. Melton G. B., Aberg P. (1991) Soldadura por pulsacionnes con electrodos rellenos de fundente basico. Dyna, 6, 15–18.
  10. (1995) Рекламный проспект фирмы «Hobart». The ultimate by Hobart. Ultra – ARC350.
  11. Shejko, P.P., Pavshuk, V.M. (1992) Power source for pulsed gas metal arc welding with smooth regulation of parameters. Svarka, 6, 44–46 [in Russian].
  12. Palani P. K., Murugan N. (2006) Selection of parameters of pulsed current gas metal arc welding. Journal of Materials Processing Technology, 172, 1–10.
  13. Tong H., Ueyama T., Harada H. (2001) Quality and productivity improvement in aluminium alloy thin sheet welding using alternating current pulsed metal inert gas welding system. Technol. Weld. Join, 6(4), 203–208.
  14. Needham J. C., Carter A. W. (1965) Material transfer characteristics with pulsed current. Weld. J., 5, 229–241.
  15. Rajasekaran S. (1999) Weld bead characteristics in pulsed GMA welding of Al–Mg alloys. J., 78(12), 397–407.
  16. Murray P. E. (2002) Selecting parameters for GMAW using dimensional analysis. Ibid, 81(7), 125–131.
  17. Amin M., Ahmed N. (1987) Synergic control in MIG welding 2 – power current controllers for steady dc open arc operation. Construct., 7, 331–340.
  18. Amin M. (1983) Pulse current parameters for arc stability and controlled metal transfer in arc welding. Ibid, 5, 272–377.
  19. Lambert J. A. (1989) Assessment of the pulsed GMA technique for tube attachment welding. J., 68(2), 35–43.
  20. Essers W. G., Gompal Van. (1984) Arc control with pulsed GMA welding, Ibid, 64(6), 26–32.
  21. Amin M. (1981) Synergetic pulse MIG welding. Metal construction, 6, 349–353.
  22. Mikhoduj, L.I., Poznyakov, V.D., Denisenko, A.V. (1999) Influence of current modulation on properties of low-carbon high-strength steel welded joints performed by manual arc welding. Svarka, 4, 13–18 [in Russian].
  23. Stanzel K. (2001) Pulsed GMAW cuts cycle time by 600 percent. Des. Fabricat., 4, 85–87.
  24. Tippins J. (1970) Box beam fabrication using the pulsed MIG process. Construct. Brit. Weld. J. 12, 547–550.
  25. Harvey R. C. (1995) Gas metal arc welding fume generation using pulsed current. Ibid, 74(11), 59–68.
  26. Tseng K., Chou C. (2002) The effect of pulsed GTA welding on the residual stress of a stinless steel weldment. Journal of materials processing technology, 123, 346–353.
  27. Krantz B. M., Coppolecchia V. (1971) The Effects of Pulsed Gas Metal-Arc Welding Parameters on Weld Cooling Rates. Welding Research Supplement, 11, 474–479.
  28. Fragetta W. A. (1968) Pulsed power welding of HY-130(T) steel, the effects of welding parameters on arc stability and fusionzone dimensions. Part I. Air Reduction Co., Inc., Murray Hill, N. J. RE-68-002- CRE-44 Contract NObs-94535 (Jan. 15, 1968).
  29. Pokhodnya, I.K., Golovko, V.V., Grabin, V.F., Vasiliev, V.G. (1997) Peculiarities of thermal cycle of submerged pulsed-arc welding. Svarka, 9, 3–8 [in Russian].
  30. Joseph D., Farson D. Harwig R. (2005) Richardson Influence of GMAW-P current waveforms on heat input and weld bead shape. Science and Technology of Welding and Joining, 10, 3, 311–318.
  31. Tomoyuki Ueyama (2013) Trends in developments in gas shield ed arc welding equipment in Japan. The Paton Welding J.,, 10-11, 53–60.