Eng
Ukr
Rus
Print

2018 №12 (14) DOI of Article
10.15407/as2018.12.15
2018 №12 (16)

Automatic Welding 2018 #12
Avtomaticheskaya Svarka (Automatic Welding), #11-12, 2018, с. 151-157

Tendencies of development of special electrometallurgy of titanium in Ukraine

S.V. Akhonin


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

The analysis was carried out on the main tendencies of development of special electrometallurgy of titanium in Ukraine. It is one of five countries, having complete cycle of titanium production from extraction of titanium-containing ores, their enrichment and production of spongy titanium to melting of titanium ingots and production of virtually complete spectrum of titanium semi-finished products. Metallurgical processing of spongy titanium into ingots in Ukraine is based on technology of electron-beam melting with intermediate crucible, which finds wide application in the world for melting of ingot-slabs. This technology provides guaranteed removal of refractory inclusions and provides the possibility to get the ingots of various cross section per one melting from charge materials of low price that provides high technical-economical indices of melting process. Production of semi-finished products of titanium alloys from the ingots was organized at the Ukrainian enterprises. There are castings, forgings, rods, hot and cold-rolled pipes, mechanical properties of which correspond to requirements of the standards. Today Ukraine has got a competitive for the world‘s markets production of high-quality ingots and ingot-slabs from titanium and alloys on its basis, which has large perspectives for further development. 8 Ref., 1 Tabl., 10 Fig.
Keywords: titanium, electron-beam melting, ingot, quality, refractory inclusions

Received: 08.08.2018
Published: 06.11.2018

References
1. Koshelap, A.V., Rajchenko, A.I. (1999) On possibility of structure refining of cast titanium and its alloys due to their modification with titanium nitride particles. Protsessy Litya, 3, 44-52 [ in Russian].
2. Mitchel, A. (1987) The production of high-quality materials by special process. J. Vac. Technol., 4 (Jul./Aug.), 2672-2677. https://doi.org/10.1116/1.574716
3. Bewley, B.P., Gigliotti, M.F.X. (1977) Dissolution rate measurements of TiN in Ti-6242. Acta Mat., 45(1), 357-370. https://doi.org/10.1016/S1359-6454(96)00098-5
4. Bellot, J.P., Mitchell, A. (1994) Hard-alfa particle behavior in a titanium alloy liquid pool. Light Metals, 2, 1187-1193.
5. Akhonin, S.V., Kruglenko, M.P., Kostenko, V.I. (2011) Mathematical modeling of process of dissolution of oxygen-containing refractory inclusions in titanium melt. Sovrem. Elektrometall., 1, 17-21 [in Russian].
6. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kiev, Naukova Dumka [in Russian].
7. Akhonin, S.V., Trigub, N.P., Zamkov, V.N., Semiatin, S.L. (2003) Mathematical modeling of aluminium evaporation during electron-beam cold-hearth melting of Ti-6Al-4V ingots. Metall. and Mater. Transact. B, 34B (August), 447-454. https://doi.org/10.1007/s11663-003-0071-4
8. Akhonin, S.V., Berezos, V.A., Pikulin, A.N., et al. (2014) Electron beam melting of surface of titanium alloy ingots. Sovrem. Elektrometall., 2, 21-25 [in Russian].