2019 №03 (06) DOI of Article
2019 №03 (08)

Automatic Welding 2019 #03
Avtomaticheskaya Svarka (Automatic Welding), #3, 2019, pp. 55-63

Methods for determination of local stresses in welded piped joints (Review)

P.N. Tkach, A.V. Moltasov, I.G. Tkach, S.N. Prokopchuk
E.O. Paton Electric Welding Institute of the NAS of Ukraine. 03150, 11 Kazimir Malevich Str., Kyiv, Ukraine. E-mail: office@paton.kiev.ua

For welded joints of pipelines and elements of welded structures, including piped ones, changes in the weld zone section are typical. In places of shape change, a local increase in stresses or their concentration occurs. The degree of concentration often plays a decisive role in determining the stress-strain state of the structure as a whole, affects the service life under cyclic loads, and also affects the process of crack nucleation and propagation. This article provides a review of works on methods for determining the maximum local stresses acting in the zone of stress concentration caused by the geometric shape of welded joints of pipelines and piped structures. 49 Ref., 1 Tabl., 4 Fig.
Keywords: pipeline welded joints, piped structures, weld geometry, local stresses, stress concentration factor

Received: 29.10.2018
Published: 20.02.2019

1. Trufyakov, V.I., Dvoretsky, V.I., Mikheev, P.P. et al. (1990) Strength of welded joints under alternating loads. Kiev, Naukova Dumka [in Russian].
2. Navrotsky, D.I. (1968) Calculation of welded structures taking into account stress concentration. Leningrad, Mashinostroenie [in Russian].
3. Kuchuk-Yatsenko, S.I., Kirian, V.I., Kazymov, B.I., Khomenko, V.I. (2006) Methodology for control of fitness for purpose of flash butt welded joints in pipelines. The Paton Welding J., 10, 2-6.
4. Paton, B.E. (2013) Research and developments of the E.O. Paton Electric Welding Institute for nowadays power engineering. Ibid., 10-11, 14-22.
5. Korostylyov, L.I., Litvinenko, D.Yu. (2015) Evaluation of stress concentration factor in welded assemblies of thin-walled structures using calculation of macro- and microconcentration. Nauk. Visnyk Khersonsk. Derzh. Morskoi Akademii, 2(13), 184-194 [in Russian].
6. Ostsemin A.A., Dil'man V.L. (2003) Effect of stress concentration in a welded seam on the low-cycle fatigue of large-diameter pipes. Chemical and Petroleum Engineering, 39(5-6), 259-264. https://doi.org/10.1023/A:1025611031576
7. Rybin, Yu.I., Stakanov, V.I., Kostylyov, V.I. et al. (1982) Investigation by finite element method of geometric parameters influence of T- and cruciform welded joints on stress concentration. Avtomatich. Svarka, 5, 16-20 [in Russian].
8. Macdonald, K.A., Haagensen, P.J. (1999) Fatigue design of welded aluminum rectangular hollow section joints. Engineering Failure Analysis, 6, 113-130. https://doi.org/10.1016/S1350-6307(98)00025-9
9. Tkacz, P.N., Moltasow, A.W. (2017) Rozwój metod oceny stanu naprężenia w elementach konstrukcji spawanych. Część 1. Metody tradycyjne. Biuletyn Instytutu Spawalnictwa, 4, 52-56 [in Polish]. https://doi.org/10.17729/ebis.2017.4/7
10. Tkacz, P.N. Moltasow, A.W. (2017) Rozwój metod oceny stanu naprężenia w elementach konstrukcji spawanych. Część 2 Metody najnowsze. Ibid, 5, 98-103 [in Polish].
11. Wood, J. (2008) A review of literature for the structural assessment of mitred bends. Int. J. of Pressure Vessels and Piping, 85, 275-294. https://doi.org/10.1016/j.ijpvp.2007.11.003
12. N'Diaye, A., Hariri, S., Pluvinage, G., Azari, Z. (2007) Stress concentration factor analysis for notched welded tubular T-joints. Int. J. Fatigue, 29, 1554-1570. https://doi.org/10.1016/j.ijfatigue.2006.10.030
13. Ai-Kah Soh, Chee-Kiong Soh (1991) SCF equations for DT/X square-to-round tubular joints. J. Construct. Steel Research, 19, 81-95. https://doi.org/10.1016/0143-974X(91)90035-Y
14. Chang, E., Dover, W.D. (1996) Stress concentration factor parametric equations for tubular X and DT joints. Int. J. Fatigue, 18, 6, 363-387. https://doi.org/10.1016/0142-1123(96)00017-5
15. Morgan, M.R., Lee, M.M.K. (1997) New parametric equations for stress concentration factors in tubular K-joints under balanced axial loading. Ibid., 19(4), 309-317. https://doi.org/10.1016/S0142-1123(96)00081-3
16. Morgan, M.R., Lee, M.M.K. (1998) Prediction of stress concentrations and degrees of bending in axially loaded tubular K-joints. J. Construct. Steel Res., 45(1), 67-97. https://doi.org/10.1016/S0143-974X(97)00059-X
17. Rodriguez, J.E., Brennan, F.P., Dover, W.D. (1998) Minimization of stress concentration factors in fatigue crack repairs. Int. J. Fatigue, 20(10), 719-725. https://doi.org/10.1016/S0142-1123(98)00039-5
18. Karamanos, S.A., Romeijn, A., Wardenier, J. (1999) Stress concentrations in multi-planar welded CHS XX-connections. J. Construct. Steel Res., 50, 259-282. https://doi.org/10.1016/S0143-974X(98)00244-2
19. Lee, M.M.K. (1999) Estimation of stress concentrations in single-sided welds in offshore tubular joints. Int. J. Fatigue, 21, 895-908. https://doi.org/10.1016/S0142-1123(99)00083-3
20. Dekker, C.J., Brink, H.J. (2000) Nozzles on spheres with outward weld area under internal pressure analysed by FEM and thin shell theory. Int. J. of Pressure Vessels and Piping, 77, 399-415. https://doi.org/10.1016/S0308-0161(00)00043-0
21. Maddox, S.J., Manteghi, S. (2002) Fatigue tests on duplex stainless steel tubular T-joints. Welding in the World, 46(3-4), 12-19. https://doi.org/10.1007/BF03266367
22. Dong, P., Hong, J.K., Osage, D., Prager, M. (2003) Assessment of ASME's FSRF rules for vessel and piping welds using a new structural stress method. Ibid., 47(1-2), 31-43. https://doi.org/10.1007/BF03266376
23. Dong, P., Hong, J.K. (2004) The master S-N curve approach to fatigue of piping and vessel welds. Ibid., 48(1-2), 28-36. https://doi.org/10.1007/BF03266411
24. Finlay, J.P., Rothwell, G., English, R., Montgomery, R.K. (2003) Effective stress factors for reinforced butt-welded branch outlets subjected to internal pressure or external moment loads. Intern. J. of Pressure Vessels and Piping, 80, 311-331. https://doi.org/10.1016/S0308-0161(03)00049-8
25. Dong, P., Prager, M., Osage, D. (2007) The design master S-N curve in ASME Div 2 rewrite and its validations. Welding in the World, 51(5-6), 53-63. https://doi.org/10.1007/BF03266573
26. Qadir, M., Redekop, D. (2009) SCF analysis of a pressurized vessel-nozzle intersection with wall thinning damage. Int. J. of Pressure Vessels and Piping, 86, 541-549. https://doi.org/10.1016/j.ijpvp.2009.01.010
27. Ahmadi, H., Lotfollahi-Yaghin, M.A., Aminfar, M.H. (2011) Distribution of weld toe stress concentration factors on the central brace in two-planar CHS DKT-connections of steel offshore structures. Thin-Walled Structures, 49, 1225-1236. https://doi.org/10.1016/j.tws.2011.06.001
28. Acevedo, C., Nussbaumer, A. (2012) Effect of tensile residual stresses on fatigue crack growth and S-N curves in tubular joints loaded in compression. Intern. J. of Fatigue, 36, 171-180. https://doi.org/10.1016/j.ijfatigue.2011.07.013
29. Habibi, N., H-Gangaraj, S.M., Farrahi, G.H. et al. (2012) The effect of shot peening on fatigue life of welded tubular joint in offshore structure. Materials and Design, 36, 250-257. https://doi.org/10.1016/j.matdes.2011.11.024
30. Chung, J., Wallerand, R., Hélias-Brault, M. (2013) Pile fatigue assessment during driving. In: Proc. of 5th Fatigue Design Conf., Fatigue Design 2013. Procedia Engineering, 66, 451-463. https://doi.org/10.1016/j.proeng.2013.12.098
31. Li, Y., Zhou, X.P., Qic, Z.M., Zhang, Y.B. (2014) Numerical study on girth weld of marine steel tubular piles. Applied Ocean Research, 44, 112-118. https://doi.org/10.1016/j.apor.2013.11.005
32. Vershinsky, S.B., Vinokurov, V.A., Kurkin, S.A. et al. (1975) Design of welded structures in machine building. Moscow, Mashinostroenie [in Russian].
33. Lotsberg, I. (1998) Stress concentration factors at circumferential welds in tubulars. Marine Structures, 11, 207-230. https://doi.org/10.1016/S0951-8339(98)00014-8
34. Lotsberg, I. (2004) Fatigue design of welded pipe penetrations in plated structures. Ibid., 17, 29-51. https://doi.org/10.1016/j.marstruc.2004.03.002
35. Lotsberg, I. (2009) Stress concentrations due to misalignment at butt welds in plated structures and at girth welds in tubulars. Intern. J. of Fatigue, 31, 1337-1345. https://doi.org/10.1016/j.ijfatigue.2009.03.005
36. Lotsberg, I. (2008) Stress concentration factors at welds in pipelines and tanks subjected to internal pressure and axial force. Marine Structures, 21, 138-159. https://doi.org/10.1016/j.marstruc.2007.12.002
37. Lotsberg, I. (2011) On stress concentration factors for tubular Y- and T-Joints in frame structures. Ibid., 24, 60-69. https://doi.org/10.1016/j.marstruc.2011.01.002
38. Lotsberg, I. (2016) Fatigue design of marine structures. Cambridge University Pres. https://doi.org/10.1017/CBO9781316343982
39. Cheng, B., Qian, Q., Zhao, X.L. (2015) Stress concentration factors and fatigue behavior of square bird-beak SHS T-joints under out-of-plane bending. Engineering Structures, 99, 677-684. https://doi.org/10.1016/j.engstruct.2015.05.033
40. Cheng, B., Qian, Q., Zhao, X.L. (2015) Numerical investigation on stress concentration factors of square bird-beak SHS T-joints subject to axial forces. Thin-Walled Structures, 94, 435-445. https://doi.org/10.1016/j.tws.2015.05.003
41. Tong, L., Xu, G., Liu, Y. et al. (2015) Finite element analysis and formulae for stress concentration factors of diamond bird-beak SHS T-joints. Ibid., 86, 108-120. https://doi.org/10.1016/j.tws.2014.10.009
42. Mukhtar, F.M., Al-Gahtani, H.J. (2016) Finite element analysis and development of design charts for cylindrical vesselnozzle junctures under internal pressure. Arabian J. for Science and Engineering, 41, 10, 4195-4206. https://doi.org/10.1007/s13369-016-2155-x
43. Chen, Y., Wan, J., Hu, K. et al. (2017) Stress concentration factors of circular chord and square braces K-joints under axial loading. Ibid., 113, 287-298. https://doi.org/10.1016/j.tws.2016.12.012
44. Yukhimets, P.S. (2015) Evaluation of residual life of a damaged T-joint. Tekh. Diagnost. i Nerazrush. Kontrol, 3, 26-31 [in Russian]. https://doi.org/10.15407/tdnk2015.03.05
45. Moffat, D.G., Mistry, J., Moore, S.E. (1999) Effective stress factor correlation equations for piping branch junctions under internal pressure loading. J. Press. Vessel Technol., 121(2), 121-126. https://doi.org/10.1115/1.2883674
46. Gubajdulin, R.G., Tingaev, A.K., Lupin, V.A. (2012) Investigation of stressed state of welded joints of non-faceted tubular assemblies. Vestnik YuUrGU, Seriya Metallurgiya, 18(15), 31-36 [in Russian].
47. Makovetskaya-Abramova, O.V., Khlopova, A.V., Makovetsky, V.A. (2014) Examination of stress concentration in welding of pipelines. Tekhn.-Tekhnol. Problemy Servisa, 2(28), 25-27 [in Russian].
48. Fedoseeva, E.M., Olshanskaya, T.V., Ignatov, M.N. (2011) Modeling of nonstationary processes in welded joint of pipelines. Neftegazovoe Delo: Elektronny Nauchny Zhurnal, 5, 376-382 [in Russian].
49. But, V.S., Olejnik, O.I. (2014) Development of technologies of repair by arc welding of operating main pipelines in Ukraine. The Paton Welding J., 5, 40-47. https://doi.org/10.15407/tpwj2014.05.07