Eng
Ukr
Rus
Print

2019 №06 (02) DOI of Article
10.15407/as2019.06.03
2019 №06 (04)

Automatic Welding 2019 #06
Avtomaticheskaya Svarka (Automatic Welding), #6, 2019, pp.21-28

Restoration surfacing of blades of gas turbines of high-temperature nickel alloys with surface defects and damages

K.A. Yushchenko1, I.S. Gakh1, B.A. Zaderii1, A.V. Zvyagintseva1, O.P. Karasevskaya2


1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine. 36 Akademika Vernadskogo Blvd., 03142, Kyiv, Ukraine. E-mail:Karas@imp.kiev.ua

The main types of defects and damages were determined based on investigation of full-scale gas turbine blades after manufacture and operation. The possibility is shown for performance of operations on their elimination by means of electron beam surfacing with filler of the same composition as in the blade. Temperature-time relationship of parameters of repair welds formation, their dimensions and geometry were stated. The technological schemes were determined for providing the temperature-time and crystallographic orientation conditions of preservation of single crystal structure in repair of high-temperature nickel alloy blades .The peculiarities of formation of welds, their structure depending on technological parameters of the process of electron beam surfacing were investigated. The methods of practical realization of obtained results in repair of blade areas of various crystallographic orientation were developed and tested. There are examples of repair of blades with structural defects of airfoil surface and damages of edges, at which restoration of initial geometry, crystallographic orientation and single crystal structure is provided. 26 Ref., 9 Fig.
Keywords: electron beam surfacing, gas turbines, blades, high-temperature nickel alloys, defects and damages, restoration, single crystal structure

Received: 15.04.2019
Published: 20.05.2019

References

1. Inozemtsev, A.A., Sandratsky, V.L. (2006) Gas turbine engines. Perm, Aviadvigatel [in Russian].
2. Mashoshin, O.F., Chichkov, B.A. (2017) Blades of aircraft gas turbine engines: Design, strength, operation: Manual for professions 25.03.01, 25.04.01. Moscow, BMSTU [in Russian].
3. Smolin, A.A., Sporyagina, N.M. (1976) Evaluation of mechanical damage of compressor rotor in operation. Service life and reliability of gas turbine engines. In: Book 2. Moscow, CIAM, 66-72 [in Russian].
4. Ilchenko, G.A., Andreev, V.I., Guseva, T.P. (1979) Analysis of operating defects and problems of repair of gas turbine engine blades. In: Proc. of 11th Conf. of Young Scientists of NIAT. Moscow, NIAT, 49-52.
5. (2006) Cast high-temperature alloys. S.T. Kishkin effect. Ed. by E.N. Kablov. In: Techn.-Sci. Coll. to 100th Birth Anniversary of S.T.Kishkin. Moscow, Nauka [in Russian].
6. Sorokin, L.I. (2004) Argon-arc surfacing of shroud platforms of high-temperature nickel alloy blades. Svarochn. Proizvodstvo, 7, 36-39 [in Russian].
7. Arzhakin, A.N., Stolyarov, I.I., Turov, A.V. (2003) Development of technology for restoration of 8th stage blades of high-pressure compressor of aircraft engine by automatic surfacing method. Svarshchik, 4, 8-9 [in Russian].
8. Yushchenko, K.A., Savchenko, V.S., Chervyakova, L.V. et al. (2005) Investigation of weldability of nickel superalloys and development of repair technology for gas turbine blades. The Paton Welding J., 6, 3-6.
9. Tarasenko, Yu.P. (2005) Postoperational state of blades of first stage of high-pressure turbine of DZh59 engine and peculiarities of their restoration. Gazoturbinnye Tekhnologii, 11-12, 30-32 [in Russian].
10. Kuznetsov, V.P., Lesnikov, V.P., Belyaev, V.E., Fedotov, E.N. (2005) Restorative repair - second life of aircraft blades. Ibid., 4, 32-34 [in Russian].
11. Yushchenko, K.A., Zadery, B.A., Gakh, I.S., Karasevskaya, O.P. (2016) Formation of weld metal structure in electron beam welding of single crystals of high-temperature nickel alloys. The Paton Welding J., 8, 15-22. https://doi.org/10.15407/tpwj2016.08.04
12. Yushchenko, K.A., Gakh, I.S., Zadery, B.A. et al. (2013) Influence of weld pool geometry on structure of metal of welds on high-temperature nickel alloy single crystals. Ibid., 5, 45-50.
13. Yushchenko, K.A., Zadery, B.A., Gakh, I.S. et al. (2013) On nature of grains of random orientation in single crystal welds of high-temperature nickel alloys. Metallofizika i Novejshie Tekhnologii, 35(10), 1347-1357 [in Russian].
14. Yushchenko, K.A., Zadery, B.A., Gakh, I.S. et al. (2009) About possibility of inheriting single crystal structure of complexly-alloyed nickel alloys under nonequilibrium conditions of fusion welding. Ibid., 31(4), 473-485 [in Russian].
15. Yushchenko, K.A., Zadery, B.A., Karasevskaya, O.P., Gakh, I.S. (2008) Sensitivity to cracking and structural changes in EBW of single crystals of heat-resistant nickel alloys. The Paton Welding J., 2, 6-13.
16. Shorshorov, M.Kh., Erokhin, A.A., Chernyshova, T.A. (1972) Hot cracks in welding of heat-resistant alloys. Moscow, Mashinostroenie [in Russian].
17. Sorokin, L.I. (2004) Weldability of high-temperature nickel alloys (Review). Pt 2. Svarochn. Proizvodstvo, 10, 8-16 [in Russian].
18. Sorokin, L.I. (1999) Stresses and cracks in welding and heat treatment of high-temperature nickel alloys. Ibid., 12, 11-17 [in Russian].
19. Shorshorov, M.Kh., Erokhin, A.A., Chernyshova, T.A. (1973) Hot cracks in welding of heat-resistant alloys. Moscow, Mashinostroenie [in Russian].
20. Sorokin, L.I. (2004) Weldability of high-temperature nickel alloys (Review). Pt 1. Svarochn. Proizvodstvo, 9, 3-7 [in Russian].
21. Yushchenko, K.A., Zviagintseva, A.V., Kapitanchuk, L.M., Gakh, I.S. (2018) The role of actively diffusing impurities of sulfur and oxygen in ductility-dip cracking susceptibility of Ni-Cr-Fe welds. J. of Achievements in Materials and Manufacturing Engineering, 89(2), 49-55. https://doi.org/10.5604/01.3001.0012.7108
22. Park, J.-W., Baby, S.S., Vitek, J.M. et al. (2003) Stray grain formation in single crystal Ni-base superalloy welds. J. of Applied Physics, 94(6), 4203-4209. https://doi.org/10.1063/1.1602950
23. Pollock, T.M., Murphy, W.H. (1996) The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metal. Mater. Transact. A, 27A, 1081-1094. https://doi.org/10.1007/BF02649777
24. Zlenko, M.A., Nagajtsev, M.V., Dovbysh, V.M. (2015) Additive technologies in mechanical engineering. Moscow, NAMI [in Russian].
25. Rykalin, N.N. (1951) Calculations of heat processes in welding. Moscow, Mashgiz [in Russian].
26. Yushchenko, K.A., Zadery, B.A., Gakh, I.S., Zvyagintseva, A.V. (2018) Prospects of development of welded single-crystal structures of high-temperature nickel alloys. The Paton Welding J., 11-12, 83-90. https://doi.org/10.15407/tpwj2018.12.09