Eng
Ukr
Rus
Print

2019 №06 (11) DOI of Article
10.15407/as2019.06.12
2019 №06 (13)

Automatic Welding 2019 #06
Avtomaticheskaya Svarka (Automatic Welding), #6, 2019, pp.71-77

Nitrogen alloying of weld metal in arc welding of corrosion-resistant steels (Review)

V.N. Lipodaev


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

The paper shows the favourable effect of nitrogen alloying of high-alloyed corrosion-resistant steels and weld metal on stabilization of the structure, prevention of grain boundary segregation in the HAZ and weld metal, and ensuring high corrosion resistance and technological strength of welded joints. 15 Ref., 2 Tabl., 10 Fig.
Keywords; arc welding, corrosion-resistant steels, nitrogen alloying, structure, corrosion resistance, technological strength, coated electrodes

Received: 10.04.2019
Published: 20.05.2019

References

1. Shnajdel, M.O. (2005) New nitrogen-containing austenitic stainless steels with high strength and plasticity. MiTOM, 11, 9-14 [in Russian].
2. Berezovskaya, V.V., Kostina, M.V., Blinov, E.V. et al. (2008) Corrosion properties of austenitic Cr-Mn-Ni-N alloys with different content of manganese. Metally, 1, 36-41 [in Rusian]. https://doi.org/10.1134/S0036029508010060
3. Han Dong, Jie Su, Speidel, V.O. (2006) In: Proc. of 9th Int. Conf. on High Nitrogen Steels. HNS (Beijing, China). Beijing, Metallurgical Industry Press.
4. Blinov, E.V. (2018) Development of alloying systems of high-nitrogen austenitic steels for heavy loaded products of cryogenic engineering: Syn. of Thesis for Dr. of Techn. Sci. Degree [in Russian].
5. Kamachi Mudali, U., Ningshen, S., Tyagi, A.K., Dayal, R.K. (1988) Influence of metallurgical and chemical variables on the pitting corrosion behavior of nitrogen-bearing austenitic stainless steel. In: Abstr. of Pap. of 5th Int. Conf. on High Nitrogen Steels. Espoo-Stockholm.
6. Shapiro, M.B., Beryshtejn, M.L., Barsukova, I.M. (1984) Influence of nitrogen on resistance of steel of 03Kh19AG3N10 type to intercrystalline corrosion. MiTOM, 1, 45-47 [in Russian].
7. Lipodaev, V.N., Yushchenko, K.A., Novikova, D.P. et. al. (1986) Improvement of weldability and corrosion resistance of welded joints from stable austenitic steels and alloys. Avtomatich. Svarka, 8, 4-7 [in Russian].
8. Ogawa, T., Tsenetomi, E. (1982) Hot cracking susceptibility of austenitic stainless steels. Weld. J., 3, 82-83.
9. Gottschalck, H. (1976) Schweissen neuer Korrosion bestaendiger Stahl. Die Schweisstechnik in Diente der Energieversorgung und des Chemianlagenbaus, 6, 91-99 [in German].
10. Kakhovsky, N.I., Fartushny, V.G., Yushchenko, K.A. (1975) Electric arc welding of steels: Reference Book. Kiev, Naukova Dumka [in Russian].
11. Sidorkina, Yu.S., Mankevich, T.V., Zinchenko, N.G. et al. (1986) Alloying of weld metal for increase of its corrosion resistance. Khimicheskoe i Neftyanoe Mashinostroenie, 4, 26-28 [in Russian]. https://doi.org/10.1007/BF01149249
12. (2017) ESAB welding consumables: Product catalog.
13. Elagin, V.P., Snisar, V.V., Lipodaev, V.N., Artyushenko, B.N. (1995) Injector torch for consumable electrode shielded-gas arc welding. Avtomatich. Svarka, 5, 60-61 [in Russian].
14. Grishchenko, L.V., Kiselev, Ya.N., Petrykin, V.I. (1978) Decrease of susceptibility to pore formation in weld metal during welding with austenitic electrodes based on chromenickel. Voprosy Sudostroeniya. Seriya Svarka, 26, 20-24 [in Russian].
15. Pisarev, V.A., Zhiznyakov, S.N. (2016) Oxygen influence on the process of nitrogen-induced pore formation in consumable electrode arc welding. The Paton Welding J., 7, 47-50. https://doi.org/10.15407/tpwj2016.07.09