2019 №06 (10) DOI of Article
2019 №06 (12)

Automatic Welding 2019 #06
Avtomaticheskaya Svarka (Automatic Welding), #6, 2019, pp.65-70

Investigation of deep penetration conditions when making samples from high-temperature alloy Inconel 718 by the method of selective laser melting

S.V. Adzhamskii1,2, A.A. Kononenko2,3
1O. Honchar Dniepr National University. 72 Gagarin Ave., 49000, Dniepr, Ukraine. E-mail: pk_dnu@i.ua
2LLC «Additive Laser Technology of Ukraine». 144 Rybinskaya Str., 49000, Dniepr, Ukraine. E-mail: infor@alt-print.com
3Z.I. Nekrasov Institute of Ferrous Metallurgy of the NAS of Ukraine. 1 Starodubov Sq., 49000, Dniepr, Ukraine. E-mail: office@isi@nas.ua

A dependence was established between selective laser melting parameters (laser power and distance between the tracks) and microstructure of samples from Inconel 718 alloy, provided a beam of a rather small diameter (0.05 mm) is used. The method of selective laser melting in ALT Alfa-150 unit manufactured by LLC «Additive Laser Technology of Ukraine» was used to make samples from Inconel 718 alloy. For the first sample series variable laser power was assigned in the range of 150 – 250 W, for the second series the distance between the tracks was varied in the range of 0.09 – 0.13 mm. Microstructural studies were conducted using optical microscope AXIOVERT 200M MAT. The effects of selective laser melting parameters (laser power, distance between tracks) on the structure of Inconel 718 material are considered. The results of the work were used to establish the dependencies between selective laser melting parameters and melt pool depth and width. Conditions of deep penetration with coarse porosity formation were determined. 20 Ref., 1 Tabl., 6 Fig.
Keywords: additive technologies, selective laser melting, powder materials, high-temperature nickel alloys, Inconel 718, melt pool, deep penetration conditions

Received: 26.04.2019
Published: 20.05.2019


1. Zlenko, M.A., Nagajtsev, M.V., Dovbysh, V.M. (2015) Additive technologies in mechanical engineering. Moscow, NAMI [in Russian].
2. Campanelli, S.L., Contuzzi, N., Angelastro, A., Ludovico, A.D. (2010) Capabilities and Performances of the Selective Laser Melting 279. Process: New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, 233-252.
3. Huzel, D.K., Huang, D.H. (1967) Design of Liquid Propellant Rocket Engines. Huston, National Aerospace and Space Administration.
4. Babakova, E.V., Khimich, M.A., Saprykin, A.A., Ibragimov, E.A. (2016) Application of selective laser melting for producing of low modulus alloy of Ti-Nb system. Vestnik PNIPU, 18(1), 117-131 [in Russian]. https://doi.org/10.15593/2224-9877/2016.1.08
5. Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.-P. (2012) Mechanical properties of AlSi10Mg produced by SLM. Physics Procedia, 39, 439-446. https://doi.org/10.1016/j.phpro.2012.10.059
6. Olakanmi, E.O. (2013). Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol., 213, 1387-1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009
7. (1983) GOST 25849-83: Metallic powders. Method for determination of particle shape. Moscow, Standarty [in Russian].
8. Louvis, E., Fox, P., Sutcliffe, Ch.J. (2011) Selective laser melting of aluminium components. J. Mater. Process. Technol., 211, 275-284. https://doi.org/10.1016/j.jmatprotec.2010.09.019
9. Olakanmi, E.O., Dalgarno, K.W., Cochrane, R.F. (2012). Laser sintering of blended AlSi powders. Rapid Prototyping J., 18(2), 109-119. https://doi.org/10.1108/13552541211212096
10. Aboulkhair, N.T., Everitt, N.M., Ashcroft I., Tuck Ch. (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing J., 1-4, 77-86. https://doi.org/10.1016/j.addma.2014.08.001
11. Yadroitsev, I., Krakhmalev, P., Yadroitsava, I. et al. (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J. Mater. Process. Technol., 213, 606-613. https://doi.org/10.1016/j.jmatprotec.2012.11.014
12. Maamoun, A.H., Xue, Yi F., Elbestawi M.A., Veldhuis S.C. (2018) Effect of selective laser melting process parameters on the quality of Al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials, 11, 2343, doi:10.3390/ma11122343. https://doi.org/10.3390/ma11122343
13. Calignano, F., Manfredi, D., Ambrosio, E.P. et al. (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol., 67, 2743-2751. https://doi.org/10.1007/s00170-012-4688-9
14. Koutiri, I., Pessard, E., Peyre, P. et al. (2018) Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Techn., 255, 536-546. https://doi.org/10.1016/j.jmatprotec.2017.12.043
15. Tucho, W.M., Lysne, V.H., Austbø, H. et al. (2018) Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloys Compd., 740, 910-925. https://doi.org/10.1016/j.jallcom.2018.01.098
16. Kurzynowski, T., Gruber, K., Stopyra, W. et al. (2018) Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mater. Sci. Eng. A, 718, 64-73. https://doi.org/10.1016/j.msea.2018.01.103
17. Liverani, E., Toschi, S., Ceschini, L., Fortunato, A. (2017) Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol., 249, 255-263. https://doi.org/10.1016/j.jmatprotec.2017.05.042
18. Amara, E.H., Fabbro, R. (2008) Modelling of gas jet effect on the melt pool movements during deep penetration laser welding. J. of Physics D: Applied Physics, 41, 10. doi:10.1088/0022-3727/41/5/055503. https://doi.org/10.1088/0022-3727/41/5/055503
19. Sukhov, D.I., Mazalov, P.B., Nerush, S.V., Khodyrev, N.A. (2017) Effect of parameters of selective laser melting on pore formation in synthesized material of corrosion-resistant steel. Trudy VIAM, 8, 34-44 [in Russian].
20. Gu, D.D., Shi, Q.M., Lin, K.J., Xia, L.X. (2018) Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting. Addit. Manuf., 22, 265-278. https://doi.org/10.1016/j.addma.2018.05.019