Avtomaticheskaya Svarka (Automatic Welding), #8, 2020, pp. 38-44
Pequliarities of formation of joints of dissimilar high-temperature nickel-base alloys in friction welding
I.V. Ziakhor, M.S. Zavertannyi, A.M. Levchuk, L.M. Kapitanchuk
E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
When creating new designs of aircraft gas turbine engines, the urgent task is to replace the mechanical fasteners of elements
of a structure from high-temperature nickel superalloys (NSA) by welded joints. The paper presents the results of research on
the processes of heating, deformation and formation of the structure of joints during friction welding (FW) of dissimilar alloys:
granular alloy EP741NP with forged alloy EI698VD and cast alloy VZhL12U. The minimum values of pressure, at which
the shortening is provided (deformation of workpieces in macrovolumes) were determined. A critical value of pressure was
established, in excess of which there is a change in the nature of the shortening process in FW of alloys EP741NP and VZhL12U
– from uniform to stepwise shortening of the workpieces. The range of change of the technological parameters of FW process
is determined, in which formation of defect-free welded joints is ensured. Microhardness studies showed absence of areas with
reduced microhardness values in the zone of FW joints of EP741NP and VZhL12U alloys. 22 Ref., 2 Tabl., 11 Fig.
Keywords: friction welding, high-temperature nickel-base alloys, deformation, γ`-phase
Received: 13.07.2020
References
1. Furrer, D., Fecht, H. (1999) Ni-based superalloys for turbine Discs. JOM, 1, 14-17.
https://doi.org/10.1007/s11837-999-0005-y2. Das, N. (2010) Advances in nickel-based cast superalloys. Transact. of the Indian Institute of Metals, 63, 2-3, 265-274.
https://doi.org/10.1007/s12666-010-0036-73. Romanov, V.V., Koval, V.A. (2020) Application of new materials in conversion of ship and aviation GTE into stationary GTI. Eastern-European J. of Enterprise Technologies, 3, 4-7 [in Russian].
4. Maslenkov, S.B. (2001) Technology of producing of permanent joint in manufacture of gas turbine engines. Moscow, Nauka i Tekhnologii [in Russian].
5. Ospennikova, O.G., Lukin, V.I., Afanasiev-Khodykin, A.N., Galushka, I.A. (2018) Manufacture of «disk» type structure of dissimilar material combination (Review). Trudy VIAM, 10, 10- 16. [in Russian].
https://doi.org/10.18577/2307-6046-2018-0-10-10-166. Magerramova, L.A. (2011) Application of bimetal blisk, manufactured by HIP method from granulated and cast nickel superalloys to improve reliability and service life of gas turbines. Vestnik UGATU, 15, 4,44, 33-38 [in Russian].
7. Ospennikova, O.G. (2012) Strategy of development of heat-resistant alloys and steels of special purpose, protective and thermal-barrier coatings. Aviats. Materialy i Tekhnologii, 5, 19-36 [in Russian].
8. Shmotin, Yu.N., Starkov, R.Yu., Danilov, D.V. et al. (2012) New materials for advanced engine of PJSC NPO Saturn. Ibid., 2, 6-8 [in Russian].
9. Lukin, V.I., Kovalchuk, V.G., Golev, E.V. et al. (2016) Electron beam welding of high-strength cast nickel alloy VZh172L. Svarochn. Proizvodstvo, 5, 44-49 [in Russian].
https://doi.org/10.1080/09507116.2016.126346410. Yushchenko, K.A., Zadery, V.A., Zvyagintseva, A.V. et al. (2008) Sensitivity to cracking and structural changes in EBW of single crystals of heat-resistant nickel alloys. The Paton Welding J., 2, 6-13.
11. Rylnikov, V.S., Afanasiev-Khodykin, A.N., Timofeeva, O.B. (2013) Features of technology of diffusion brazing of heat-resistant alloy EP975 and cast single-crystal intermetallic alloy VKNA-4U for blisk structure. Svarochn. Proizvodstvo, 7, 19-25 [in Russian].
12. Rylnikov, V.S., Afanasiev-Khodykin, A.N., Galushka, I.A. (2013) Technology of brazing of «blisk» type structure from dissimilar alloys. Trudy VIAM, 10. URL: http://viam-works.ru/plugins/ content/journal/uploads/articles/pdf/251.pdf [in Russian].
13. Li, W., Vairis, A., Preuss, M., Ma, T. (2016) Linear and rotary friction welding review. Int. Materials Reviews, 61, 2, 71-100. DOI: 10.1080/09506608.2015.1109214.
https://doi.org/10.1080/09506608.2015.110921414. Senkov, O.N., Mahaffey, D.W., Semiatin, S.L., Woodward, C. (2014) Inertia friction welding of dissimilar superalloys Mar-M247 and LSHR. Metallurgical and Materials Transact. A, 45A, 5545-5561.
https://doi.org/10.1007/s11661-014-2512-x15. Ola, O.T., Ojo, O.A., Wanjara, P., Chaturvedi, M.C. (2011) Analysis of microstructural changes induced by linear friction welding in a nickel-base superalloy. Ibid., 42A, 3761- 3777.
https://doi.org/10.1007/s11661-011-0774-016. Lukin, V.I., Samorukov, M.L. (2017) Peculiarities of formation of structure of heat-resistant wrought alloy VZh175 welded joints, produced by rotary friction welding. Svarochn. Proizvodstvo, 6, 25-33 [in Russian].
17. Bychkov, V.M., Selivanov, A.S., Medvedev, A.Yu. et al. (2012) Investigation of weldability of heat-resistant nickel alloy EP742 by linear friction welding method. Vestnik UGATU, 16, 7, 52, 112-116 [in Russian].
18. Lukin, V.I., Kovalchuk, V.G., Samorukov, M.L. et al. (2010) Peculiarities of friction welding technology of joints from VKNA-25 and EP975 alloys. Svarochn. Proizvodstvo, 5, 28-33 [in Russian].
https://doi.org/10.1080/09507116.2011.58135719. Sorokin, L.I. (2005) Formation of hot cracks in welding of heat-resistant nickel alloys (Review). Ibid., 7, 29-33 [in Russian].
20. Lebedev, V.K., Chernenko, I.A., Villya, V.I. (1987) Friction welding: Refer. Book. Leningrad, Mashinostroenie [in Russian].
21. Vaulin, D.D., Eremenko, V.I., Vlasova, O.N. et al. (2006) Technological features of the manufacture of stamped semi-finished products from heat-resistant nickel alloys. In: Perspective technologies for light and special alloys. Moscow, FIZMATLIT, 294-301 [in Russian].
22. Bondarev, B.I., Fatkullin, O.Kh., Eremenko, V,N. et al. (1999) Development of heat-resistant nickel alloys for gas turbine discs. Tekhnologiya Lyogkikh Splavov, 3, 49-53 [in Russian].
Advertising in this issue: