2021 №05 (03) DOI of Article
2021 №05 (05)

Automatic Welding 2021 #05
Avtomaticheskaya Svarka (Automatic Welding), #5, 2021, pp. 28-33

Discharge-pulse treatment of the Al – Ti – C system modifier

L.M. Lobanov1, O.M. Syzonenko2, V.V. Holovko1, P. Tashev3, Ye.V. Lypian2, M.S. Prystash2, A.S. Torpakov2, M.O. Pashchin1, O.L. Mikhodui1, V.O. Sheretskyi11

1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2Institute of Pulse Processes and Technologies of the NAS of Ukraine. 54018, Mykolaiv, Bohoyavlenskyi Ave., 43-a. E-mail: dioo@iipt.com.ua
3Institute of Metal Science, Equipment and Technologies «Acad. A. Balevsci» with Hydroaerodynamics

The results of studying the influence of the modifier of the Al – Ti – C system, obtained by high-voltage electric discharge treatment in a hydrocarbon liquid, on the structure and properties of the cast AK7pch (A357) alloy are presented. The prospects for the use of a modifier produced by the method of a high-voltage electric discharge treatment of metal powders to improve the structure of cast alloys and weld metal are shown. 25 Ref., 1 Tabl., 4 Fig.
Keywords: welded joint, weld metal, high-voltage electric discharge, modifier of the structure of cast alloys, metallurgy, dispersion, carbidization



1. Tashev, P., Aleksiev, N., Manolov, V., Cherepanov, A.N. (2017) Nanomodification in welding and surfacing processes. Kosmicheskie Apparaty i Tekhnologii, 1(19), 16-21 [in Russian].
2. Eremin, E.N., Shalai, V.V., Filippov, Yu.O., Sumleninov, V.K. (2012) Use of modification in electroslag welding of heat-resistant alloys. Vysoki Tekhnologii v Mashynobuduvanni, 22(1), 115-120 [in Russian].
3. Eremin, E.N., Filippov, Yu.O., Rumyantsev, G.P. (2011) Structural changes in high-temperature nickel alloys at its modification by refractory joint nanoparticles. Ibid., 21(1), 98-104 [in Russian].
4. Syzonenko, О.М. , Prokhorenko, S.V., Lypyan, E.V. (2020) Pulsed discharge preparation of a modifier of Ti-TiC system and its influence on the structure and properties of the metal. Materials Sci., 56(2), 232-239. ISSN 1068-820X (Print), 1573-885X (Electronic). https://doi.org/10.1007/s11003-020-00421-1
5. Syzonenko, O.M., Prystash, M.S., Zaichenko, A.D. et al. (2020) Application of high-concentrated energy flows in powder metallurgy for producing carbide-steels. Kiev, Naukova Dumka [in Russian]. ISBN 978-966-00-1756-6.
6. Sizonenko, O.N., Ivliev, A.I., Baglyuk, G.A. (2014) Advanced processes of manufacture of powder materials. Nikolaev, NUK [in Russian]. ISBN 978-966-321-292-0.
7. Savyak, M.P., Melnik, O.B., Uvarova, I.V. (2016) Crystallographic features of formation of nanodisperse titanium carbide during grinding of titanium and carbide in planetary milling. Poroshk. Metallurgiya, 5/6, 3-12 [in Ukrainian].
8. Hong, S.-M., Park, J.-J., Park, E.-K. et al. (2015) Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents. Powder Technology, 274, 393-401. https://doi.org/10.1016/j.powtec.2015.01.047
9. Sizonenko, O., Vovchenko, A. (2014) Рulsed discharge technologies of processing and obtainment of new materials (Кeview). Int. Virtual J. for Science, Тechnics and Innovations for the Industry, 12, 41-44.
10. Sizonenko, O.N., Baglyuk, G.A., Raichenko, A.I. (2012) Variation in the particle size of Fe-Ti-B4C powders induced by high-voltage electrical discharge. Powder Metallurgy and Metal Ceramics, 51(3-4), 129-136. https://doi.org/10.1007/s11106-012-9407-4
11. Sizonenko, O.N., Baglyuk, G.A., Raichenko, A.I. (2011) Effect of high-voltage discharge on the particle size of hard alloy powders. Ibid., 49(11/12), 630-636. https://doi.org/10.1007/s11106-011-9280-6
12. Lipyan, E.V., Sizonenko, O.N., Torpakov, A.S., Zhdanov, A.A. (2015) Thermodynamic analysis of heterogeneous chemical reactions in system "powder mixture Fe-Ti-hydrocarbon liquid" under action of high-voltage electric discharges. Visnyk NTU KhPI. Series: Tekhnika ta Elektrofizyka Vysokykh Naprug, 51 (1160) 59-65 [in Russian]. ISSN 2079-0740.
13. Syzonenko, О.М., Prokhorenko, S.V., Lypyan, E.V. et al. (2020) Pulsed discharge preparation of a modifier of Ti-TiC system and its influence on the structure and properties of the metal. Materials Science, 56, 2, 232-239. ISSN 1068-820X (Print), 1573-885X (Electronic). https://doi.org/10.1007/s11003-020-00421-1
14. Stroganov, G.B., Rotenberg, V.A., Gershman, G.B. (1977) Alloys of aluminium with silicon. Moscow, Metallurgiya [in Russian].
15. Crubes, U.G. (1983) Veredelung von Aluminium gublеgierung mit Al-Sr 3,5-Vorlegierung in Drahtform. Giesserei, 70(8), 257-258.
16. Abramov, A.A. (2012) About modification of silumins. Litejnoe Proizvodstvo, 7, 19 [in Russian].
17. Korolyov, S.P., Nemenenok, B.M., Mikhajlovsky, V.M. et al. (2005) Problems and practice of modification of hypereutectic silumins for piston alloy. Litejshchik Rossii, 10, 19-22 {in Russian].
18. Stetsenko, V.Yu. (2008) On modification of hypoeutectic and eutectic silumins. Litio i Metallurgiya, 1, 149-150 [in Russian].
19. Xu, C.L, Jiang, Q.C., Yang, Y.F. et al. (2006) Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al-Si alloy. J. of Alloys and Compounds, 422(1-2), 1-4. https://doi.org/10.1016/j.jallcom.2005.03.128
20. Xu, C.L., Wang, H.Y., Yang, Y.F. (2006) Effect of La2O3 in the Al-P-Ti-TiC La2O3 modifier on primary silicon in hypereutectic Al-Si alloy. Ibid., 421(1), 128-132. https://doi.org/10.1016/j.jallcom.2005.11.034
21. Stetsenko, V.Yu. (2008) On mechanism of modification of silumins. Metallurgiya Mashinostroeniya, 1, 20-23 [in Russian].
22. Popova, M.V., Ruzhilo, A.A. (2000) Hereditary effect of batch and melt processing on thermal expansion of hypereutectic silumins. Litejnoe Proizvodstvo, 10, 4-6 [in Russian].
23. Sizonenko, O., Prokhorenko, S., Torpakov, A. et al. (2018) The metal-matrix composites reinforced by the fullerenes. AIP Advances. 085317. ISSN 2158-3226. https://doi.org/10.1063/1.5031195
24. Sizonenko, O.N., Grigoryev, E.G., Zaichenko, A.D. (2017) Plasma methods of obtainment of multifunctional composite materials, dispersion-hardened by nanoparticles. High Temperature Materials and Processes, 36(9), 891-896. ISSN 0334-6455. https://doi.org/10.1515/htmp-2016-0049
25. Bethune, D.S., Meijer, G., Tang, W.C., Rosen, H.J. (1990) The vibrational Raman spectra of purified solid films of C60 and C70. Chem. Phys. Lett., 174, 219-222. https://doi.org/10.1016/0009-2614(90)85335-A

Advertising in this issue: