Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №08 (04) DOI of Article
2021 №08 (06)

Automatic Welding 2021 #08
Avtomaticheskaya Svarka (Automatic Welding), #8, 2021, pp. 24-28

Influence of alloying elements on solidus and liquidus temperatures of Cu–Mn–Ni–Si system alloys

S.V. Maksymova, I.V. Zvolinskyy, E.V. Ivanchenko
E.O. Paton Electric Welding Institute. 11 Kazymyr Malevych Str., 03150 Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Plasma brazing of steels is performed using brazing filler metals having liquidus temperature above 1000 °C. This work shows the possibility of lowering the brazing temperature by applying brazing filler metals having a lower melting temperature. The method of high-temperature differential thermal analysis was used to establish the influence of manganese, nickel and silicon on solidus and liquidus temperatures of experimental alloys of Cu–Mn–Ni–Si system. Empirical data and mathematical processing methods were applied to determine the influence of chemical elements on calculated coefficients of the impact of alloying elements on solidus and liquidus temperatures of alloys of Cu–Mn–Ni–Si system that promotes lowering of melting temperature. The influence of nickel and silicon content at fixed quantity of manganese of 10 and 16 wt.% on the area of spreading over 08kp (rimmed) steel and melting temperature range was studied. Sound formation of brazed joints from 08kp alloy produced by plasma brazing with application of the studied alloys was proved experimentally. Ref. 16, Tabl. 2, Fig. 5
Keywords: plasma brazing, spreading area, solidus and liquidus temperature, high-temperature differential thermal analysis, melting temperature range

Received: 28.04.2021


1. Frigs, A., Stockel, S. (2012) Vollmechaniches Metall-Inert gas hartloten von feuerverzinktem Feinblech aus Stahl. Schweissen und Schneiden, 12, 624-629.
2. Chovet, C., Guiheux, S. (2006) Possibilities offered by MIG and TIG brazing of galvanized ultra-high strength steel for automotive applications. La metallurgia Italiana, 7-8, 47-53.
3. Kim, Y., Park, K. (2016) A Review of Arc Brazing Process and Its Application in Automotive Institute for Advanced Engineering. Robot Center, Yongin, Republic of Korea, Sungbok Kwak Duckyang Ind. Co., Ltd., R&D Center, Suwon, Republic of Korea. International Journal of Mechanical Engineering and Robotics Research, 5, 4, 246-250. https://doi.org/10.18178/ijmerr.5.4.246-250
4. Matusiak, J., Wycislik, J. (2015) Influence of shielding gas on fume and gas emission during arc weld brazing of steel sheets with coatings. SHIELDING GAS ON FUMEing arc weld brazing of steel sheets with coatings Metalurgija, 54, 71-74.
5. Wook-Je Cho, Tae-Jin Yoon, Sung-Yun Kwak et al. (2017) Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steel. Journal of Welding and Joining, 35(2), 23-29. https://doi.org/10.5781/JWJ.2017.35.2.4
6. Norbert Knopp, Mündersbach, Robert Killing, Solingen (2005) Brazing of galvanised sheets using an arc-reliable and economically viable. Welding and Cutting, 4, 6, 7-9.
7. Belkacem Bouaifi (2003) Low-heat process enhances joining of coated sheet metals. Welding J., 1, 26-30.
8. Knopp N., Killing R. (2004) Hartlöten verzinkter Feinbleche mit dem lichtbogen sicher und wirtschaftlich [Teil 2]. Der Praktiker, 1, 8-12.
9. Maksymova, S.V., Zvolinskyy, I.V., Yurkiv, V.V. et al. (2020) Residual stresses in thin-sheet galvanized steel joint after arc welding and plasma brazing. The Paton Welding J., 9, 31-35 [in English]. https://doi.org/10.37434/tpwj2020.09.05
10. Knopp, N., Killing, R. (2003) Hartloten verzinkter Feinbleche mit dem Lichtbogen - sicher und wirtschaftlict (Teil 1). Der Praktiker, 12, 366-371 [in German].
11. Ashmarin, I.P., Vasiliev, N.N., Ambrosov, V.A. (1975) Fast statistical methods and experimental design. Izd.-vo Leningrad. Un-ta [in Russian].
12. Lyakishev, N.P. (1997) Constitutional diagrams of binary metal systems. In: Refer. book, 3 Vol., Vol. 2. Moscow, Mashinostroenie [in Russian].
13. Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L. (1990) Binary alloy phase diagrams. The materials information society. ASM International, 1.
14. Application of the process of plasma and plasma+TIG welding. https://www.svartools.ru/technology/primenenieprotsessa- plazmennoy-i-plazmennoy-tig-varki
15. Bronshtejn, I.N., Semendyaev, K.A. (1986) Mathematics handbook. Moscow, Nauka [in Russian].
16. Ivanchenko, V.G., Oshkaderov, S.P., Severina, S.N. (2012) Determination of optimum compositions of complex solid solution hardened alloys based on nickel-chrome for orthopedic dentistry. Metallofizika i Novejshie Tekhnologii, 34(8), 1133-1143 [in Russian].

Advertising in this issue: