2022 №04 (05) DOI of Article
2022 №04 (07)

Automatic Welding 2022 #04
Avtomaticheskaya Svarka (Automatic Welding), #4, 2022, pp. 41-49

Analysis of modern experience in development of sealing coatings for parts of gas turbine engines (Review)

Yu.S. Borysov, N.V. Vihilianska, O.M. Burlachenko, L.P. Olevska, V.M. Lopata

E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

In the work the experience in development of sealing thermal coatings for parts of gas turbine engines was analyzed. It was found that the task of development of compositions and technologies of thermal spraying of sealing coatings intended to provide the optimal radial gap between the elements of the stator and the rotor in order to reduce the consumption of technological fuel and to increase the efficiency coefficient of engines, is relevant. The principles of optimization of the composition of the material of the sealing coating were described. They consist mainly in combination of ease of fitting blades into the coating with resistance to erosion wear, which provides the operation efficiency of the coating with its long life. The temperature modes of operation of sealing coatings in different sections of a gas turbine engine were determined. For spraying of sealing coatings applying thermal methods, composite powders are used, the composition of which corresponds to the concept purpose – solid grease. As a metal component, Ni, AlSI, Ni- and Co-alloys are used and as a solid grease, graphite, hexagonal boron nitride, betonite and polyester are used. For high-temperature sections of turbines, a combination of a stabilized zirconium oxide with hexagonal boron nitride and polyester are used. The composition of these combinations determines the temperature zone of their use related to the working conditions of the compressor or turbine. 29 Ref., 13 Fig.
Keywords: sealing coating, thermal spraying, matrix, solid grease, abrasion, erosion resistance, compressor, turbine

Received: 30.03.2022


1. Koval, V.A., Mikhailov, V.E., Romanov, V.V., Kovalyova, E.A. (2013) Features of operation processes in gas-turbine and steam-gas power plants and their components. Kharkov, Kontrast [in Russian].
2. Inozemtsev, A.A., Bazhin, S.V., Snitko, M.A. (2012) Problems of optimization of turboprop radial clearances of aircraft gas-turbine engine. Vestnik Dvigatelestroyeniya, 2, 149-154.
3. Nalimov, Yu.S. (2014) Analysis of damage of gas-turbine engine blades. Metall i Litiyo Ukrainy, 12, 17-22 [in Russian].
4. Berezkin, S.V., Greshta, V.L., Lekhovitser, Z.V., Olshanetskiy, V.E. (2019) Improvement of batch produced and prospective coatings of labyrinth seals of hot section parts of gas-turbine engine. Novi Materialy i Tekhnologii v Metalurgii ta Mashynobuduvanni, 2, 91-94 [in Russian].
5. Wilson, S. (2011) Overview of Sulzer Metco Compressor and Turbine Abradable Technology. 8th International Charles Parsons Turbine Conference, University of Portsmouth, Portsmouth, UK. URL: http://www.iom3.org/sites/default/files/iom3-corp/wed%200940%20s%20Wilson.pdf [дата звернення 10.01.2022]
6. Siddiqui, S.M., Joshi, P., Nayak, N., Vidyasagar, K. (2014) Thermal Spraying, Optimization and Characterization of Abradable Seal Coating for Gas Turbine for Service Temperature up to 750 °C. Adv. Mat. Lett, 5(9), 506-510. https://doi.org/10.5185/amlett.2014.588
7. Aussavy, D. (2016) Processing characterization and modeling of thermomechanical properties of threee abradable coatings: NiCrAl-bentonite, CoNiCrAlY-BN-polyester, and YSZ-polyester. Materials. Université de Technologie de Belfort- Montbeliard.
8. Mohammad, F., Kashif, A. (2021) Criteria for Abradable Coatings to Enhance the Performance of Gas Turbine Engines. J. Mate. Sci. Metall, 2, 101.
9. Hopkins, N.P. (2007) Abradable coatings - From black art, to materials science. Engineering Doctorate, Swansea University.
10. Kutz, M. (2018) Handbook of Environmental Degradation of Materials: Third edition. https://doi.org/10.1016/C2016-0-02081-8
11. Fois, N., Watson, M., Marshall, M. (2016) The influence of material properties on the wear of abradable materials. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231(2), 240-253. https://doi.org/10.1177/1350650116649528
12. Irissou, E., Dadouche, A., Lima, R.S. (2013) Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings. Journal of Thermal Spray Technology, 23(1-2), 252-261. https://doi.org/10.1007/s11666-013-9998-4
13. Thermally sprayed abradable coating technology for sealing in gas turbines [online]. Oerlikon Metco. [Дата звернення 10.01.2022]. Режим доступу: https://www.oerlikon.com/ecomaXL/files/oerlikon_ThermallySprayedAbradableCoatings_ 2012.10.pdf&download=1
14. There are a number of different abradable coating types [online]. JINHU COLOR POWDER COATING CO.LTD. [Дата звернення 10.01.2022]. Режим доступу: https://www.chinapowdercoating. com/abradable-coating/
15. Rajendran, R. (2012) Gas turbine coatings - An overview. Engineering Failure Analysis, 26, 355-369. https://doi.org/10.1016/j.engfailanal.2012.07.007
16. Zhang, N., Shen, J., Xuan, H. et al. (2015) Evaluation of an AlSi-polyester abradable seal coating performance using high-temperature and high-velocity abrasion tests. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(7), 842-851. https://doi.org/10.1177/1350650115619150
17. Aluminum-Polyester Powder. Technical Bulletin #10-141 [online]. Metco601NS. [Дата звернення 10.01.2022]. Режим доступу: https://www.gordonengland.co.uk/sef/attachment. php?aid=309
18. Oerlikon Metco Material Product Data Sheet Aluminium Bronze/Polyester Abradable Powders [online]. Oerlikon Metco. [Дата звернення 10.01.2022]. Режим доступу: https://www.oerlikon.com/ecoma/files/DSMTS-0012.3_Al_ Bronze_Poly.pdf?download=true
19. Gao, S., Xue, W., Duan, D., Li, S. (2016). Tribological behaviors of turbofan seal couples from friction heat perspective under high-speed rubbing condition. Friction, 4(2), 176- 190. https://doi.org/10.1007/s40544-016-0114-x
20. Sporer, D., Wilson, S., Giovannetti, I. et al. (2007) On the potential of metal and ceramic based abradables in turbine seal applications. Proceedings of the Thirty-Sixth Turbomachinery Symposium [онлайн]. 79-86. [Дата звернення 10.01.2022].
21. Johnston, R.E. (2011) Mechanical characterisation of Al- Si-hBN, NiCrAl-Bentonite, and NiCrAl-Bentonite-hBN freestanding abradable coatings. Surface and Coatings Technology, 205(10), 3268-3273. doi:10.1016/j.surfcoat.2010.11.044 https://doi.org/10.1016/j.surfcoat.2010.11.044
22. Cheng, X., Yueguang Y., Jianming L. et al. (2022) Mesoscale Simulation and Evaluation of the Mechanical Properties of Ceramic Seal Coatings. Coatings [онлайн]. 12(4), 438. Дата звернення 10.01.2022]. https://doi.org/10.3390/coatings12040438
23. Sotnikov, E.G., Lekhovitzer, Z.V., Greshta, V.L. et al. (2015) Development of composition of heat-resistant coating on parts of gas-turbine engines operating under high temperatures conditions. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 10(12), 6-10 [in Russian].
24. Greshta, V.L., Pavlenko, D.V., Dvirnyk, Ya.V., Tkach, D.V. (2019) Experiment and calculation procedure for determination of dynamic modulus of elasticity of running-in sealing coatings of GTE turbines. ibid., 8(160), 105-113. https://doi.org/10.32620/aktt.2019.8.16
25. Greshta, V., Tkach, D., Sotnikov, E. et al. (2018) Studying and designing improved coatings for labyrinth seals of gas-turbine engine turbines. Eastern-European Journal of Enterprise Technologies, 4(12, 94), 56-63. https://doi.org/10.15587/1729-4061.2018.140912
26. Peyraut, F., Seichepine, J.-L., Coddet, C., Hertter, M. (2008) Finite element modeling of abradable materials - Identification of plastic parameters and issues on minimum hardness against coatings thickness. International Journal for Simulation and Multidisciplinary Design Optimization, 2(3), 209-215. https://doi.org/10.1051/ijsmdo:2008028
27. Faraoun, H.I., Grosdidier, T., Seichepine, J.-L. et al. (2006) Improvement of thermally sprayed abradable coating by microstructure control. Surface and Coatings Technology, 201(6), 2303-2312. https://doi.org/10.1016/j.surfcoat.2006.03.047
28. Karthikeyan, S., Balasubramanian, V., Rajendran, R. (2014) Developing empirical relationships to estimate porosity and Young»s modulus of plasma sprayed YSZ coatings, Applied Surface Science, 296, 31-46. https://doi.org/10.1016/j.apsusc.2014.01.021
29. Thermally sprayed abradable coating technology for sealing in gas turbines [онлайн]. (2012) Oerlikon Metco. [Дата звернення doi: 10.15587/1729-4061.2018.140912]. Режим доступу: https://www.oerlikon.com/ecomaXL/files/oerlikon_Thermally-SprayedAbradableCoatings_2012.10.pdf&download=1

Advertising in this issue: