"Avtomatychne Zvaryuvannya" (Automatic Welding), #3, 2023, pp. 20-26
Experimental determination of velocity of zirconium particles in microplasma spraying
S.M. Kalyuzhny1, V.V. Savytsky1, S.G. Vojnarovych1, O.M. Kyslytsya1, Z.G. Fayzramanov2
1E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2D. Serikbayev East Kazakhstan Technical University. 69 Protosanov Str., 070004, Ust-Kamenogorsk, Kazakhstan.
E-mail: kanc_ekstu@mail.ru
In the work the measurement and analysis of the velocity of dispersed particles from the zirconium wire introduced into the arc
gap of the microplasma jet were performed depending on the technological parameters of the spraying process. Using optical
digital devices, it was found that in the mentioned studied ranges of the mode parameters, the average velocity of dispersed
zirconium particles ranges from 8 ± 2.5 to 28.7 ± 4 m/s. It was established that in the case of a combination of minimum values
of current (I = 16 А), the flow rate of plasma-forming gas (Qpl = 160 l/h) and the sprayed wire feed rate (Vw = 2.9 m/min), the
formation of particles with a maximum diameter of 310 μm and an average velocity of 8 ± 2.5 m/s is provided. The use of the
mentioned values of the mode parameters in the microplasma process of zirconium wire spraying will allow forming a coating
with a developed surface and the most porous structure, which can be practically applied on the surfaces of endoprostheses with
a cementless fixation. 21 Ref., 1 Tabl., 5 Fig.
Keywords: microplasma coating, zirconium, dispersion, particles velocity
Received: 16.03.2023
References
1. Darut, G., Liao, H., Coddet, C. et al. (2015) Steel coating application for engine block bores by Plasma Transferred Wire Arc spraying process. Surf. and Coat. Technol., 268(25), 115-122.
https://doi.org/10.1016/j.surfcoat.2014.11.0182. O'Neil, N., Syed Kabir A. (2020) Pulsed waterjet roughening of cast iron and aluminum alloy for automotive engine remanufacturing with plasma transferred wire arc coating. Coatings, 10(9), 864.
https://doi.org/10.3390/coatings100908643. Zhang, J., Dulal Saha C., Jahed, H. (2021) Microstructure and mechanical properties of plasma transferred wire arc spray coating on aluminum cylinder bores. Surf. and Coat. Technol., 426(25), 127757.
https://doi.org/10.1016/j.surfcoat.2021.1277574. Baldaev, L.Kh., Borisov, V.N., Vakhalin, V.A. (2004) Thermal spraying. Ed. by L.Kh. Baldaev. Moscow, Market DS [in Russian].
5. Kuzmin, V.I., Gulyaev, I.P., Sergachev, D.V. et al. (2021) Application of functional coatings by supersonic thermal plasma flows. J. of Physics Conf. Series 2131(5), 052053.
https://doi.org/10.1088/1742-6596/2131/5/0520536. Meeß, J., Anasenzl, M., Ossenbrink, R. et al. (2022) Influence of Particle Velocities on Adhesion Strength of Cold Spray Inner Diameter Coatings. J. Thermal Spray Technol., 31, 2025-2038.
https://doi.org/10.1007/s11666-022-01439-47. Krasnov, A.N., Sharivker, S.Yu., Zilberberg, V.G. (1970) Low-temperature plasma in metallurgy. Moscow, Metallurgiya [in Russian].
8. Karp, I.N., Rudoj, A.P. (1991) Influence of speed of steel wire feeding on dispersion of metal by air jet. Avtomatich. Svarka, 10, 36-38 [in Russian].
9. Voinarovich, S.G., Alontseva, D.L., Khodzhanov, A.P. et al. (2021) Influence of parameters of microplasma spraying zirconium coatings on sprayed material losses and porosity of coatings. Vestnik KazNAEN. Seriya Fizicheskaya, 79(4), 8296.
10. Alontseva, D., Ghassemieh, E., Voinarovych, S. et al. (2020) Manufacturing and characterization of robot assisted microplasma multilayer coating of Titanium implants. Johnson Matthey Technol Rev, 64(2), 180-191.
https://doi.org/10.1595/205651320X1573728326828411. Mauer, G., Vaßen, R., Stöver, D. (2007) Comparison and Applications of DPV-2000 and Accuraspray-g3 diagnostic Systems. J. Thermal Spray Technol., 16(3), 414-424.
https://doi.org/10.1007/s11666-007-9047-212. Gulyaev, P.Yu., Dolmatov, A.V., Popov, V.A. et al. (2012) Methods of optical diagnostics of particles in high-temperature flows. Polzunovskiy Vestnik, 2/1, 4-7 [in Russian].
13. Dokukina, I.A. (2012) Study of movement speed of dispersion particles in plasma flow. Izvestiya Samarskogo Nauchnogo Tsentra RAN, 14(6), 143-149 [in Russian].
14. Bogdanovich, V.I., Grishanov, V.N., Dokukina, I.A. et al. (2011) High-speed video filming for control of process and equipment of plasma thermal spraying of coatings. Problemy Mashinostroeniya i Avtomatizatsii, 1, 113-118 [in Russian].
15. Gulyaev, I.P., Gulyaev, P.Yu., Korzhik, V.N. et al. (2015) Experimental investigation of process of plasma-arc wire spraying. The Paton Welding J., 3-4, 36-41.
https://doi.org/10.15407/tpwj2015.04.0416. Borisov, Yu.S., Kislitsa, A.N., Vojnarovich, S.G. (2006) Peculiarities of the process of microplasma wire spraying. The Paton Welding J., 4, 21-25.
17. Polushchenko, V.S., Puzryakov, A.F. (1978) Determination of maximal speed of wire melting in plasma jet. In: Abstr. of Papers of 7th All-Union Meet. on Theory and Practice of Thermal Coating Deposition, 104-107 [in Russian].
18. Voinarovych, S.G., Alontseva, D.L., Kyslytsia, O.N. et al. (2021) Fabrication and characterization of Zr microplasma sprayed coatings for medical applications. Advances in Materials Sci., 2(68), 93-105.
https://doi.org/10.2478/adms-2021-001319. Yushchenko, K.A.,Borysov, Yu.S., Kuznetsov, V.D. et al. (2007) Surface engineering. Kyiv, Naukova Dumka [in Ukrainian].
20. Kudinov, V.V. (1977) Plasma coatings. Moscow, Nauka [in Russian].
21. Gaiko, G.V., Pidgaetskyi, V.M., Sulyma, O.M. et al. (2022) Revision hip component of endoprosthesis with cement-free fixation. Ukraine Pat. 150555 Institute of Traumatology and Orthopedics, NANU [in Ukrainian].
Advertising in this issue: