"Avtomatychne Zvaryuvannya" (Automatic Welding), #6, 2024, pp. 10-17
Features of formation of biocompatible coatings from silverdoped hydroxyapatite powder by microplasma spraying
S.M. Kaliuzhnyi1, S.Yu. Maksymov1, S.G. Voinarovych1, O.M. Kyslytsia1, N.V. Ulyanchich2, V.V. Kolomiiets2, V.M. Teplyuk1, N.V. Prokhorenkova3
1E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: 14dep_pwi@ukr.net
2Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine. 3 Omeliana Pritsaka Str., 03142, Kyiv, Ukraine.
E-mail: dir@ipms.kyiv.ua
3School of Traditional and Alternative Energy, D. Serikbayev East Kazakhstan Technical University, 69 Protozanov St.,
Ust-Kamenogorsk, 070004, Kazakhstan. E-mail: kense@edu.ektu.kz
The work investigates the formation of bioceramic coatings from hydroxyapatite (HAp) doped with silver (HAp+Ag) using the
microplasma spraying (MPS) method on titanium substrates. The influence of MPS technological parameters (current, plasmaforming
gas flow rate, spraying distance) and particle size of the powder on the degree of particle melting, surface morphology
and phase composition of the coatings was analyzed. It was established that optimization of MPS modes in an argon microplasma
jet makes it possible to control the thermal decomposition of HAp and the ratio of crystalline to amorphous phases during the
formation of HAp+Ag coatings. It was proven that HAp+Ag coatings produced by MPS exhibit antibacterial activity against
Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa: they completely inhibit the growth of E. coli and
significantly reduce the viability of the other tested microorganisms. HAp+Ag coatings on a zirconium interlayer demonstrated
an adhesion strength exceeding 15 MPa, which is sufficient for their application on implant surfaces. The obtained results
confirm the effectiveness of the applied MPS method and its prospects for creating economical, technologically optimized, and
biofunctional coatings on titanium implants. 38 Ref., 2 Tabl., 5 Fig.
Keywords: microplasma spraying, biocompatible coating, silver-doped hydroxyapatite, splat test, phase composition of coatings
Received: 03.10.2025
Received in revised form: 18.11.2025
Accepted: 23.12.2025
References
1. Eliaz, N., & Metoki-Shlubsky, N. (2017). Calcium Phosphate
Bioceramics: A Review of Their History, Structure, Properties,
Coating Technologies and Biomedical Applications.
Materials, 10(4), 334. https://doi.org/10.3390/ma10040334
2. Heimann, R. B. (2024). Plasma-Sprayed Osseoconductive
Hydroxylapatite Coatings for Endoprosthetic Hip Implants:
Phase Composition, Microstructure, Properties, and
Biomedical Functions. Coatings, 14(7), 787. https://doi.org/10.3390/coatings14070787
3. Gupta, T. T., et al. (2020). Staphylococcus aureus aggregates
on orthopedic materials under varying levels of shear stress.
Applied and Environmental Microbiology, 86(19). https://doi.org/10.1128/aem.01234-20
4. Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., de Roo
Puente, Y. J. D., Hoyos-Nogués, M., Gil, F. J., & Perez, R.
A. (2021). Antibacterial approaches in tissue engineering
using metal ions and nanoparticles: From mechanisms to
applications. Bioactive Materials, 6(12), 4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
5. Dube, E., & Okuthe, G. E. (2025). Silver Nanoparticle-Based
Antimicrobial Coatings: Sustainable Strategies for Microbial
Contamination Control. Microbiology Research, 16(6), 110.
https://doi.org/10.3390/microbiolres16060110
6. Rios-Pimentel, F. F., Méndez-González, M. M., & García-Rocha, M. (2023). A short review: hydroxyapatite coatings for
metallic implants. Heat Treatment and Surface Engineering,
5(1). https://doi.org/10.1080/25787616.2023.2202002
7. Bansal, G., Gautam, R., Misra, J., & Mishra, A. (2023). Coating
Methods for Hydroxyapatite-A Bioceramic Material. In Bioceramics.
Springer. https://doi.org/10.1007/978-981-99-3549-9_13
8. Su, Y., Cockerill, I., Zheng, Y., Tang, L., Qin, Y.-X., & Zhu,
D. (2019). Biofunctionalization of metallic implants by
calcium phosphate coatings. Bioactive Materials, 4, 196–206. https://doi.org/10.1016/j.bioactmat.2019.05.001
9. Sun, L. (2018). Thermal Spray Coatings on Orthopedic
Devices: When and How the FDA Reviews Your Coatings.
Journal of Thermal Spray Technology, 27, 1160–1171.
https://doi.org/10.1007/s11666-018-0759-2
10. Mohseni, E., Zalnezhad, E., & Bushroa, A. R. (2014).
Comparative investigation on the adhesion of hydroxyapatite
coating on Ti–6Al–4V implant: A review paper. International
Journal of Adhesion and Adhesives, 48, 238–257. https://doi.org/10.1016/j.ijadhadh.2013.09.030
11. Khor, K. A., Li, H., & Cheang, P. (2004). Significance of
melt-fraction in HVOF sprayed hydroxyapatite particles,
splats and coatings. Biomaterials, 25(7–8), 1177–1186.
https://doi.org/10.1016/j.biomaterials.2003.08.008
12. Alontseva, D., Azamatov, B., Safarova, Y., Voinarovych, S.,
& Nazenova, G. (2023). A Brief Review of Current Trends
in the Additive Manufacturing of Orthopedic Implants with
Thermal Plasma-Sprayed Coatings. Coatings, 13(7), 1175.
https://doi.org/10.3390/coatings13071175
13. Weiss, S., Alontseva, D., Safarova, Y., Voinarovych, S.,
Obrosov, A., Yamanoğlu, R., Khoshnaw, F., Yavuz, H., Kaliuzhnyi,
S., Krasavin, A., & Azamatov, B. (2025). Microplasma-Sprayed Titanium and Hydroxyapatite Coatings
on Ti6Al4V Alloy: In vitro Biocompatibility and Corrosion
Resistance: Part I. Johnson Matthey Technology Review, 69.
https://doi.org/10.1595/205651325X17201903387613
14. Alontseva, D., Safarova, Y., Voinarovych, S., Obrosov, A.,
Yamanoglu, R., Khoshnaw, F., Yavuz, H. I., Nessipbekova,
A., Syzdykova, A., Azamatov, B., Khozhanov, A., & Weiß,
S. (2024). Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings. Coatings, 14(2),
206. https://doi.org/10.3390/coatings14020206
15. Borisov, Yu. S., Borisova, A. L., Tunick,A. Yu., Karpets, M.
V., Vojnarovich, S. G., Kislica, A. N., & Kuzmich-Yanchuk, E.
K. (2008). Effect of microplasma sputtering parameters on the structure, phase composition, and texture of coatings from
hydroxyapatite. Automatic Welding, 4, 15–20.
16. Cizek, J., & Khor, K. A. (2012). Role of in-flight temperature and
velocity of powder particles on plasma sprayed hydroxyapatite
coating characteristics. Surface and Coatings Technology, 206(8–9), 2181–2191. https://doi.org/10.1016/j.surfcoat.2011.09.058
17. Dyshlovenko, S., Pawlowski, L., Roussel, P., et al. (2006).
Relationship between plasma spray parameters and
microcracking of hydroxyapatite coatings. Surface and
Coatings Technology, 200(20–21), 3845–3855. https://doi.org/10.1016/j.surfcoat.2004.11.037
18. Gu, Y. W., Khor, K. A., & Cheang, P. (2003). In vitro studies
of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite
coatings in simulated body fluid. Biomaterials, 24(9), 1603–1611. https://doi.org/10.1016/s0142-9612(02)00573-2
19. Bolelli, G., Sabiruddin, K., Lusvarghi, L., Gualtieri, E., Valeri,
S., & Bandyopadhyay, P. P. (2010). FIB assisted study of plasma
sprayed splat-substrate interfaces. Surface and Coatings
Technology, 205(2), 363–371. https://doi.org/10.1016/j.surfcoat.2010.06.057
20. Fukumoto, M., Hayashi, H., & Yokoyama, T. (1995).
Relationship between particle’s splat pattern and coating
adhesive strength of HVOF sprayed Cu-alloy. Journal of
Japan Thermal Spraying Society, 2(3), 149–156.
21. Yushenko, V., et al. (2006). Plasmatron for Spraying of
Coatings. WO2004010747A1 – Google Patents.
22. Alontseva, D., Ghassemieh, E., Voinarovych, S., Kyslytsia,
O., Polovetskyi, Y., Prokhorenkova, N., & Kadyruldina,
A. (2019). Manufacturing and Characterization of Robot
Assisted Microplasma Multilayer Coating of Titanium
Implants. Johnson Matthey Technology Review, 64, 157–167. https://doi.org/10.1595/205651320x15737283268284
23. Dyshlovenko, S., Pateyron, B., Pawlowski, L., Murano D.
(2004). Numerical simulation of hydroxyapatite powder behaviour
in plasma jet. Surface and Coatings Technology, 179(1),
110–117. https://doi.org/10.1016/S0257-8972(03)00890-9
24. Morks M. F., Kobayashi A. (2007). Influence of spray
parameters on the microstructure and mechanical properties
of gas-tunnel plasma sprayed hydroxyapatite coatings.
Materials Science and Engineering: B., 139(2-3), 209–215.
https://doi.org/10.1016/j.mseb.2007.02.008
25. Brossard S., Munroe P. R., Tran A. T. T., and Hyland M. M.
(2010) Study of the effects of surface chemistry on splat formation
for plasma sprayed NiCr onto stainless steel substrates, Surface
and Coatings Technology, 204(9-10), 1599–1607, 2-s2.0-71049164591. https://doi.org/10.1016/j.surfcoat.2009.10.008
26. Chandra S. and Fauchais P., (2009). Formation of solid splats
during thermal spray deposition, Journal of Thermal Spray
Technology. 18(2), 148–180, 2-s2.0-67349102724. https://doi.org/10.1007/s11666-009-9294-5
27. Xing Y. Z. and Li C. J., (2009). Bonding characteristics of
a plasma-sprayed Yttria-stabilized zirconia splat on a hightemperature
substrate, Proceedings of the 4th Asian Thermal
Spray Conference, 285–288.
28. Fauchais P., (2004). Understanding plasma spraying. Journal
of Physics D: Applied Physics. 37(9), R86–R108. https://doi.org/10.1088/0022-3727/37/9/R02
29. Heimann, R.B. (2016) Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and
Biomedical Properties. J Therm Spray Tech 25, 827–850.
https://doi.org/10.1007/s11666-016-0421-9
30. Klein, C. P. A. T., de Blieck-Hogervorst, J. M. A., Wolke, J. G.
C., et al. (1990). Studies of the solubility of different calcium
phosphate ceramic particles in vitro. Biomaterials, 11(7),
509–512. https://doi.org/10.1016/0142-9612(90)90067-z
31. Yang, C. Y., Wang, B. C., Chang, E., & Wu, B. C. (1995).
The influences of plasma spraying parameters on the
characteristics of hydroxyapatite coatings: a quantitative
study. Journal of Materials Science: Materials in Medicine,
6(4), 249–257. https://doi.org/10.1007/bf00120267
32. Vardelle, A., Moreau, C., Themelis, N. J., et al. (2015). A
perspective on plasma spray technology. Plasma Chemistry
and Plasma Processing, 35(3), 491–509. https://doi.org/10.1007/s11090-014-9600-y
33. Borisov, Yu. S., Borisova, A. L. (1986). Plasma powder coatings. Kyiv: Technica.
34. Dyshlovenko, S., Pawlowski, L., & Roussel, P. (2005). Experimental
investigation of influence of plasma spraying operational
parameters on properties of hydroxyapatite. In Thermal Spray
Connects: Explore its surfacing potential! ASM International,
726–731.
35. Yang, Y., Kim, K.-H., & Ong, J. L. (2005). A review on calcium
phosphate coatings produced using a sputtering process—an
alternative to plasma spraying. Biomaterials, 26(3), 327–337. https://doi.org/10.1016/j.biomaterials.2004.02.029
36. McPherson, R., Gane, N., & Bastow, T. J. (1995). Structural characterization
of plasma-sprayed hydroxyapatite coatings. Journal of
Materials Science: Materials in Medicine, 6(6), 327–334.
37. LeGeros, R. Z. (2002). Properties of osteoconductive
biomaterials: calcium phosphates. Clinical Orthopaedics
and Related Research, 395, 81–98. https://doi.org/10.1097/00003086-200202000-00009
38. Voinarovych, S., Maksimov, S., Kaliuzhnyi, S., Kyslytsia, O.,
Safarova, Y., & Alontseva, D. (2025). Functional Assessment
of Microplasma-Sprayed Hydroxyapatite-Zirconium Bilayer
Coatings: Mechanical and Biological Perspectives. Materials,
18(14), 3405. https://doi.org/10.3390/ma18143405
Advertising in this issue: