"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2019, #4, 44-50 pages
Journal SEM
Publisher International Association «Welding»
ISSN 2415-8445 (print)
Issue № 4, 2019 (November)
Pages 44-50
Structure of intermetallic titanium alloy of Ti–Al–Nb–Cr system
V.A. Kostin, G.M. Grigorenko
E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
The paper deals with alloys based on titanium aluminides, which are modern promising materials for manufacturing parts and mechanisms in ship-building, mechanical engineering, aviation and aerospace engineering. Cold-hearth electron beam melting is the main method to produce sound ingots of intermetallics based on Ti–Al system. Structure and properties of an intermetallic alloy of Ti–Al–Nb–Cr system were studied, and calculated equilibrium state diagram was plotted. It is shown that in the ingot central part the alloy structure consists approximately of 85…90 vol. % of (γ + α
2)-phase, massive sections of γ-phase of about 10 vol. %, as well as small fraction of 3…5 vol. % of cubic B2-phase, located along the grain boundaries. CALPHAD methodology was used to plot the equilibrium ternary state diagrams of Ti–Al–Nb–Cr systems. Ref. 15, Tabl. 2, Fig. 4.
Key words: titanium alloys; electron beam melting; intermetallics; titanium aluminides; phase transformations; ternary state diagrams
Received: 26.11.19
Published: 23.09.19
References
1. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. Book. Moscow, VILS-MATI [in Russian].
2. Clemens, Н., Mayer, S. (2013) Design, processing, microstructure, properties and applications of advanced intermetallic TiAl alloys. Advanced Engineering Materials, 15(4), 191-215.
https://doi.org/10.1002/adem.2012002313. Lipsitt, H. A., Shechtman, D., Schafrik, R. E. (1975) The plastic deformation of TiAl. Met. Transact. A., 6, 1991-1998.
https://doi.org/10.1007/BF031618224. Paton, B.E., Trigub, N.P., Akhonin, S.V. (2008) Electron beam melting of refractory and high-reactive metals. Kiev, Naukova Dumka [in Russian].
5. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kiev, Naukova Dumka [in Russian].
6. Trigub, N.P., Derecha, A.Ya., Kalinyuk, A.N. (1998) Refining of titanium in electron beam furnaces with cold hearth. Problemy Spets. Elektrometallurgii, 2, 16-20 [in Russian].
7. Tikhonovsky, A.L., Tur, A.A., Kravets, A.N. et al. (1992) Electron beam installation UE-208. Ibid., 1, 71-74 [in Russian].
8. Kablov, E.N., Lukin, V.I. (2008) Intermetallics based on titanium and nickel for advanced engineering products. The Paton Welding J., 11, 65-70.
9. Saunders, N., Miodownik, A.P., Cahn, R.W. (1998) CALPHAD - Calculation of phase diagrams. Pergamon Materials Series, Vol. 1, Elsevier Science, Oxford.
10. Fan, Z., Tsakiropoulos, P., Miodownik, A.P. (1994) A generalized law of mixtures. J. Mater. Sci., 29, 141-150.
https://doi.org/10.1007/BF0035658511. Lukas, H.L., Fries, S.G., Sundman, B. (2007) Computational thermodynamics: The Calphad method. Cambridge, U.K., Cambridge University Press.
https://doi.org/10.1017/CBO978051180413712. https://www.matcalc.at/images/stories/Download/Database/mc_al_v2.029.tdb
13. Hari Kumar, K.C., Wollants, P., Delaey, L. (1994) Thermodynamic calculation of Nb-Ti-V phase diagram. Calphad, 18(1), 71-79.
https://doi.org/10.1016/0364-5916(94)90008-614. Liang, Y., Guo, C., Li, C. (2008) Thermodynamic modeling of the Al-Cr system. J. Alloys Compd., 460(1-2), 314-319.
https://doi.org/10.1016/j.jallcom.2007.06.04615. Witusiewicz, V.T., Bondar, A.A., Hecht, U., Velikanova, T. Ya. (2009) The Al-B-Nb-Ti system IV. Experimental study and thermodynamic reevaluation of the binary system Al-Nb and Al-Nb-Ti systems. Ibid., 472, 133-161.
https://doi.org/10.1016/j.jallcom.2008.05.008