2020 №01 (07) DOI of Article
2020 №01 (09)

The Paton Welding Journal 2020 #01
The Paton Welding Journal, 2020, #1, 54-60 pages
Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       #1, 2020 (February)
Pages                      54-60

Improvement of the effectiveness of laser welding processes by reciprocating movement of the focus

V.Yu. Khaskin2, V.M. Korzhyk1,2, Ch. Dong2 and E.V. Illyashenko1

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail:
2Guangdong Institute of Welding (China-Ukraine E.O. Paton Institute of Welding) 363 Chiansin Str., 510650, Guangzhou, Tianhe. E-mail:

The work is devoted to evaluation of the impact of lens focus scanning along the laser radiation axis in laser and laser-arc welding on welding-technological properties of the processes and physicomechanical characteristics of weld metal in joints of low-alloyed and high-alloyed steels. It is noted that the effectiveness of welding processes here can be increased by optimization of frequency and amplitude of focus scanning. 12 Ref., 2 Tables, 9 Figures.
Keywords: laser welding, hybrid laser-MIG welding, carbon steel, stainless steel, technological experiments, energy input
Received:                21.10.19
Published:               21.02.20


1. Grigoryants, A.G., Shiganov, I.N. (1988) Laser technique and technology. In: 7 books. Book 5: Laser welding of metals. Ed. by A.G. Grigoryants. Moscow, Vysshaya Shkola [in Russian].
2. Vvedenov, A.A., Gladush, G.G., Yavokhin, A.N. (1983) On mechanism of maintain of deep key hole in liquid using laser beam. PMTF, 1 48-41 [in Russian].
3. Oikawa, M., Minamida, K., Yoshida, Y., Suzuki, N. (2004) Development of all laser welded honeycomb structure for civil transports. Nippon Steel Technical Report, 89, January, 96-101.
4. Shelyagin, V.D., Khaskin, V.Yu. (2002) Tendencies in development of laser-arc welding (Review). The Paton Welding J., 6, 25-28.
5. Shelyagin, V.D., Khaskin, V.Yu., Garashchuk, V.P. et al. (2002) Hybrid CO2-laser and CO2 consumable-arc welding. Ibid., 10, 35-37.
6. Engström, H., Nilsson, K., Flinkfeldt, J. et al. (2001) Laser hybrid welding of high strength steels. In: Proc. of ICALEO 2001, 20th Int. Congress on Applications of Lasers & Electro-Optics (October 15-18, 2001, Jacksonville, Florida, USA). Ed. Xiangli Chen, Laser Institute of America, 2001, 125-134.
7. Unt, A., Poutiainen, I., Salminen, A. (2015) Influence of filler wire feed rate in laser-arc hybrid welding of T-butt joint in shipbuilding steel with different optical setups. Physics Procedia, 78, 45-52.
8. Frostevarga, J., Kaplan, A. F.H. (2014) Undercuts in laser arc hybrid welding. Ibid., 56, 663-672.
9. Alam, Md. M. (2009) A study of the fatigue behaviour of laser and hybrid laser welds (Licentiate thesis). Luleå, Luleå Tekniska Universitet, 133.
10. Krivtsun, I.V., Khaskin, V.Yu., Korzhik, V.N., Ziyi Luo (2015) Industrial application of hybrid laser-arc welding (Review). The Paton Welding J., 7, 41-46.
11. Golubev, V.S. (2009) Hydrodynamic phenomena in laser welding with channeling penetration of radiation. In: Deep channeling and filamentation of power laser radiation in substance. Ed. by V.Ya. Panchenko. Moscow, Intercontact Nauka, 35-63 [in Russian].
12. Khaskin, V.Yu., Pavlovsky, S.Yu., Garashchuk, V.P. et al. (2001) Peculiarities of welding thin-sheet low-carbon steels using a pulsed-periodic radiation of CO2-laser. The Paton Welding J., 2, 42-46.