Eng
Ukr
Rus
Print

2020 №01 (07) DOI of Article
10.37434/as2020.01.08
2020 №01 (01)

Automatic Welding 2020 #01
Avtomaticheskaya Svarka (Automatic Welding), #1, 2020, pp.57-63

Improvement of the effectiveness of laser welding processes by reciprocating movement of the focus

V.Yu. Khaskin2, V.M. Korzhyk1,2, Ch. Dong2, E.V. Illyashenko1
1E.O. Paton Electric Welding Institute of the NAS of Ukraine, 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2Guangdong Institute of Welding (China-Ukraine E.O. Paton Institute of Welding). 363 Chiansin Str., 510650, Guangzhou, Tianhe. E-mail: wuby@gwi.gd.cn

The work is devoted to evaluation of the impact of lens focus scanning along the laser radiation axis in laser and laser-arc welding on welding-technological properties of the processes and physico-mechanical characteristics of weld metal  in joints of low-alloyed and high-alloyed steels. It is noted that the effectiveness of welding processes here can be increased by optimization of focus frequency and amplitude. 12 Ref., 2 Tabl., 9 Fig.
Keywords: laser welding, hybrid laser-MIG welding, carbon steel, stainless steel, technological experiment, rate of energy input

Received: 21.10.2019

References

1. Grigoryants, A.G., Shiganov, I.N. (1988) Laser technique and technology. In: 7 books. Book 5: Laser welding of metals. Ed. by A.G. Grigoryants. Moscow, Vysshaya Shkola [in Russian].
2. Vvedenov, A.A., Gladush, G.G., Yavokhin, A.N. (1983) On mechanism of maintain of deep key hole in liquid using laser beam. PMTF, 1 48-41 [in Russian]. https://doi.org/10.1007/BF00914476
3. Oikawa, M., Minamida, K., Yoshida, Y., Suzuki, N. (2004) Development of all laser welded honeycomb structure for civil transports. Nippon Steel Technical Report, 89, January, 96-101.
4. Shelyagin, V.D., Khaskin, V.Yu. (2002) Tendencies in development of laser-arc welding (Review). The Paton Welding J., 6, 25-28.
5. Shelyagin, V.D., Khaskin, V.Yu., Garashchuk, V.P. et al. (2002) Hybrid CO2-laser and CO2 consumable-arc welding. Ibid., 10, 35-37.
6. Engström, H., Nilsson, K., Flinkfeldt, J. et al. (2001) Laser hybrid welding of high strength steels. In: Proc. of ICALEO 2001, 20th Int. Congress on Applications of Lasers & Electro-Optics (October 15-18, 2001, Jacksonville, Florida, USA). Ed. Xiangli Chen, Laser Institute of America, 2001, 125-134.
7. Unt, A., Poutiainen, I., Salminen, A. (2015) Influence of filler wire feed rate in laser-arc hybrid welding of T-butt joint in shipbuilding steel with different optical setups. Physics Procedia, 78, 45-52. https://doi.org/10.1016/j.phpro.2015.11.016
8. Frostevarga, J., Kaplan, A. F.H. (2014) Undercuts in laser arc hybrid welding. Ibid., 56, 663-672. https://doi.org/10.1016/j.phpro.2014.08.071
9. Alam, Md. M. (2009) A study of the fatigue behaviour of laser and hybrid laser welds (Licentiate thesis). Luleå, Luleå Tekniska Universitet, 133.
10. Krivtsun, I.V., Khaskin, V.Yu., Korzhik, V.N., Ziyi Luo (2015) Industrial application of hybrid laser-arc welding (Review). The Paton Welding J., 7, 41-46. https://doi.org/10.15407/tpwj2015.07.07
11. Golubev, V.S. (2009) Hydrodynamic phenomena in laser welding with channeling penetration of radiation. In: Deep channeling and filamentation of power laser radiation in substance. Ed. by V.Ya. Panchenko. Moscow, Intercontact Nauka, 35-63 [in Russian].
12. Khaskin, V.Yu., Pavlovsky, S.Yu., Garashchuk, V.P. et al. (2001) Peculiarities of welding thin-sheet low-carbon steels using a pulsed-periodic radiation of CO2-laser. The Paton Welding J., 2, 42-46.
>