Eng
Ukr
Rus
Print

2016 №03 (08) DOI of Article
10.15407/as2016.03.01
2016 №03 (02)

Automatic Welding 2016 #03
Avtomaticheskaya Svarka (Automatic Welding), #3, 2016, pp. 7-18
 

Advanced gas tungsten arc welding (surfacing) current status and application

S. Egerland, J. Zimmer, R. Brunmaier, R. Nussbaumer, G. Posch And B. Rutzinger


Fronius International GmbH, Wels, Austria. E-mail: egerland.stephan@fronius.com
 
 
Abstract
Gas Shielded Tungsten Arc Welding (GTAW) — a process well-known providing highest quality weld results joined though by lower performance. Gas metal arc welding is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion-resistant surfacing, e.g. applying nickel-based filler materials, are regularly in consistent demand to comply with «zero defect» criteria. In this conjunction weld performance limitations are overcome employing advanced «hot-wire» GTAW systems. This paper, from a welding automation perspective, describes the technology of such devices and deals with the current status is this field, namely the application of dual-cathode hot-wire electrode GTAW cladding, considerably broadening achievable limits. 27 Ref., 2 Tables, 14 Figures.
 
Keywords: GTAW (cladding), single-cathode GTAW, hot-wire welding, dual-cathode GTAW
 
 
 
Received:                15.01.16
Published:               28.04.16
 
 
References
  1. Egerland, (2010) Controlled GMA welding processes prove applicability for high-quality weld overlay. In: Welding and Repair Technology for Power Plants: Proc. of 9th Int. EPRI Conf. (2010 June 23–25, Fort Myers). Palo Alto: Electric Power Research Institute.
  2. Egerland, (2009) Status and perspectives in overlaying under particular consideration of sophisticated welding processes. Quart. J. JWS, 27(2), 50–54. https://doi.org/10.2207/qjjws.27.50s
  3. Egerland, S., Helmholdt, R. (2008) Overlaying (cladding) of high temperature affected components by using the cold metal transfer process. In: Safety and reliability of welded components in energy and proc. industry, 327–332. Graz: Verlag der Technischen Universitat.
  4. Freeman, N.D., Manz, A.F., Saenger, J.F.Jr. Inventors; Union Carbide Corp, Method for depositing metal with a TIG arc. Pat. US 3483354. Publ. Dec. 9, 1969.
  5. Manz, F., Norman, R., Wroth, R.S. Inventors; Union Carbide Corp, assign. Electric arc working with hot wire addition. Pat. US 3163743. Publ. Dec. 29, 1964.
  6. Manz, A.F. Inventors; Union Carbide Corp, assign. Consumable electrode arcless electric working. Pat. US 3122629A. Publ. Feb. 25, 1964.
  7. Mizuno, T., Shimizu, T. Inventors; Kaisha MDK assign. Hot wire welding system. US 4464558A. Publ. Aug. 7, 1984.
  8. Goldsberry, C. (2007) Hot-wire TIG: Not new but gaining appeal. http://weldingdesign.com/ archive/hot-wire-tig-not-new-gaining-appeal
  9. Manabe, Y., Wada, H., Zenitani, S. (2000) Investigation on TIG welding using 2 filler wires with electromagnetically controlled molten pool process in horizontal position. J. JWS, 8(1), 40–50; https://doi.org/10.2207/qjjws.18.40
  10. Hori, K., Watanabe, H., Myoga, T. et al. (2004) Development of hot wire TIG welding methods using pulsed current to heat filler wire: Research on pulse heated hot wire TIG welding Welding Int., 18(6), 456–468; https://doi.org/10.1533/wint.2004.3281
  11. Ueguri, S., Tabata, Y., Shimizu, T. et al. (1986) A study on control of deposition rate in hot-wire TIG welding. Quart. JWS, 4(4), 678–684; https://doi.org/10.2207/qjjws.4.678
  12. Yamamoto, M., Shinozaki, K., Myoga, T. et al. (2008) Development of ultra-high-speed GTA welding process using pulse-heated hot-wire. In: Pre-Prints of the 82nd Nat. Meeting of JWS, 228–229.
  13. Shinozaki, K., Yamamoto, M., Nagamitsu, Y. et (2009) Melting phenomenon during ultra-high-speed GTA welding method using pulse-heated hot-wire. Quart. J. JWS, 27(2), 22–26; https://doi.org/10.2207/qjjws.27.22s
  14. Adonyi, Y., Richardson, R., Baeslack, W. (1992) Investigation of arc force effects in subsurface GTA welding. Welding J., 71(9), 321–330.
  15. Rokhlin, S., Guu, A. (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Ibid., 72(8), 381–390.
  16. Mendez, P., Eagar, T. (2003) Penetration and defect formation in high-current arc welding. Ibid., 82(10), 296–306. https://doi.org/10.2172/835707
  17. Yamada, M. (1998) Development of high efficiency TIG welding met 1st Rep. of JWS, 63, 24–25.
  18. Yamada, M., Tejima, A. Inventors; Ishikawajima-Harima Heavy Industries Co. assign. TIG welding apparatus and method. Pat. US 6982397. Publ. Jan. 3, 2006.
  19. Kobayashi, Nishimura, Y., Iijima, T. et al. (2013) Practical application of high efficiency twin-arc TIG welding method (SEDAR-TIG) for PCLNG storage tank. Welding in the World, 48(7/8), 35–39.
  20. Norrish, J. (2006) Advanced welding processes. Cambridge: Woodhead Publ. https://doi.org/10.1533/9781845691707
  21. Zhang, , Leng, X., Lin, W. (2006) Physics characteristic of coupling arc of twin-tungsten TIG welding. Transact. of Nonferrous Metals Soc. of China, 16(4), 813–817. https://doi.org/10.1016/S1003-6326(06)60331-2
  22. Leng, X., Zhang, G., Wu, (2006) The characteristic of twin-electrode TIG coupling arc pressure. J. Phys. D: Appl. Phys., 39(6), 1120–1126; https://doi.org/10.1088/0022-3727/39/6/017
  23. Maecker, H. (1955) Plasmastromungen in Lichtbogen infolge eigenmagnetischer Kompression. Zeitschrift fur Physik, 141(1), 198–216. https://doi.org/10.1007/BF01327300
  24. Zhang, G., Xiong, J., Gao, H. et al. (2012) Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. Quantitative Spectroscopy & Radiative Transfer, 113(15), 1938–1945; https://doi.org/10.1016/j.jqsrt.2012.05.018
  25. Martins, E. (2010) Avaliacao da soldagem tig autogena duplo catodo twin Tig [trabalho de graduacao]. Florianopolis: Universidade Federal de Santa Catarina.