Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2019 №01 (02) DOI of Article
2019 №01 (04)

Automatic Welding 2019 #01
Avtomaticheskaya Svarka (Automatic Welding), #1, 2019, pp. 23-28

Strength and fatigue life of joints of high-strength alloy AA7056-T351, made by electron beam welding

I.M. Klochkov, V.M. Nesterenkov, O.M. Berdnikova, S.I. Motrunich
E.O. Paton Electric Welding Institute of the NAS of Ukraine, 11 Kazymyr Malevych Str., 03150, Kyiv. E-mail: office@paton.kiev.ua

Application of modern aluminium alloys when designing elements and structures for aircraft and rocket construction, sea vessels and ground transportation, is ensured by high values of their strength and ductility. New welding technologies allow reducing the structure weight and lowering the operating costs, respectively, while providing the required values of strength and fatigue life. Here, producing sound welded joints of heat-treatable aluminium alloys is an urgent science and technology problem. Application of welding technologies with a small temperature contribution, such as electron beam welding, compared to traditional welding processes, is promising for aircraft and rocket construction. The objective of this work is studying the level of softening, structural features, magnitude of residual postweld stresses, mechanical properties and regularities of fatigue resistance of joints of heat-hardenable aluminium alloy AA7056-T351 with higher zinc content, produced by electron beam welding. 8 Ref., 2 Tabl., 5 Fig.
Keywords: welded joints, fatigue resistance, residual stresses, aluminium alloy, electron beam

Received: 04.10.2018
Published: 20.12.2018

1. Ishchenko, A.Ya. (2003) Aluminium high-strength alloys for welded structures. Progresyvni Materialy i Tekhnologii, 1, 50–82 [in Russian].
2. Gureeva, M.A., Grushko, O.E., Ovchinnikov, V.V. (2008) Welded aluminium alloys in structures of transport vehicles. VIAM/2008-205182, 10, 51–82 [in Russian].
3. Fridlyander, I.N., Sandler, V.G., Grushko, O.E., Bersenov, V.V. et al. (2002) Aluminium alloys as a perspective material in automobile industry. Metallovedenie i Termich. Obrab. Metallov, 9, 3–9 [in Russian].
4. Martin, K., Ruzek, R., Novakova, L. (2015) Mechanical bahaviour of AA7475 friction stir welds with the kissing bond defect. Int. J. of Fatigue, 74(5), 7–19.
5. Eibla, M., Sonsinob, C.M., Kaufmann, H., Zhanga, G. (2003) Fatigue assessment of laser welded thin sheet aluminium. Ibid., 25(8), 719–731. https://doi.org/10.1016/S0142-1123(03)00053-7
6. Nesterenkov, V.M., Kravchuk, L.A., Arkhangelsky, Yu.A., Orsa, Yu.V. (2017) Formation of welded joints of magnesium alloys in pulse multipass electron beam welding. The Paton Welding J., 4, 35–38. https://doi.org/10.15407/tpwj2017.04.07
7. Kasatkin, B.S., Kudrin, A.B., Lobanov, L.M. et al. (1981) Experimental methods of investigation of strains and stresses. Kiev, Naukova Dumka [in Russian].
8. Gushcha, O.I., Smilenko, V.N., Kot, V.G., Brodovoj, V.A., Klochkov, I.N. (2009) Control of stresses based on application of subsurface acoustic waves. Tekh. Diagnost. i Nerazrush. Kontrol, 1, 11–13