Avtomaticheskaya Svarka (Automatic Welding), #10, 2019, pp. 18-21
Influence of laser power and welding velocity on the microstructure of Zr-based bulk metallic glass welded joints
Haiyan Wanga1, Ma Yanyib2, Zhang Yupenga1, Dong Chunlina1, Yi Yaoyonga1, Xi Huaia1
1Guangdong Provincial Key Laboratory of Advanced Welding Technology, Guangdong Welding Institute
(China-Ukraine E.O. Paton Institute of Welding), Guangzhou, 510650, China
2School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
Laser welding is employed to weld Zr
67.8Cu
24.7Al
3.43Ni
4.07 bulk metallic glass, and the effects of laser power and welding velocity on the microstructures of bulk metallic glass joints are studied. Owing to the high speed and high-energy density of laser welding, the weld fusion zones remain amorphous structure. Some nano-grains are formed in weld fusion zones and of benefits for the improvement of microhardness. Crystallization happens in heat-affected zone and deteriorates the hardness of materials. The joint welded with laser power of 600 W and velocity of 110 mm/s exhibits the lowest degree of crystallization. Larger laser power or slower welding speed would cause excessive heat accumulation in heat-affected zone. 10 Ref., 1 Tabl., 3 Fig.
Keywords: Bulk metallic glass; laser welding; microstructure; crystallization
Published: 02.10.2019
Received: 01.07.2019
References
1. Williams, E., Lavery, N. (2017) Laser processing of bulk metallic glass: A review. Journal of Material Processing Technology, 247, 73-91.
https://doi.org/10.1016/j.jmatprotec.2017.03.0342. Wang, H.S., Chen, H.G., Jang, J.S.C., Chiou, M.S. (2010) Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding. Materials Science & Engineering A, 528(1), 338-341.
https://doi.org/10.1016/j.msea.2010.09.0143. Kawahito, Y., Terajima, T., Kimura, H. et al. (2008) High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30. Materials Science & Engineering B, 148(1), 105-109.
https://doi.org/10.1016/j.mseb.2007.09.0624. Li, B., Li, Z.Y., Xiong, J.G. et al. (2006) Laser welding of Zr45Cu48Al7 bulk glassy alloy. Journal of Alloys & Compounds, 413(1), 118-121.
https://doi.org/10.1016/j.jallcom.2005.07.0055. Kim, J.H., Lee, C., Lee, D.M. et al. (2007) Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass. Materials Science & Engineering A, 449(13), 872-875.
https://doi.org/10.1016/j.msea.2006.02.3236. Wang, G., Huang, Y.J., Shagiev, M., Shen, J. (2012) Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass. Materials Science and Engineering A, 541, 33-37.
https://doi.org/10.1016/j.msea.2012.01.1147. Wang, H.S., Chen, H.G., Jang, S.C. (2010) Microstructure evolution in Nd:YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy. Journal of Alloys & Compounds, 495(1), 224-228.
https://doi.org/10.1016/j.jallcom.2010.01.1328. Chen, B., Shi, T.L., Li, M. et al. (2014) Laser welding of annealed Zr55Cu30Ni5Al10 bulk metallic glass. Intermetallics, 46(3), 111-117.
https://doi.org/10.1016/j.intermet.2013.11.0089. Siegel, R.W. (1993) Nanostructured materials-mind over matter. Nanostructured Materials, 3(1), 1-18.
https://doi.org/10.1016/0965-9773(93)90058-J10. Karch, J., Birringer, R., Gleiter, H. (1987) Ceramics ductile at low temperature. Nature, 330(6148), 556-558.
https://doi.org/10.1038/330556a0