Eng
Ukr
Rus
Print

2020 №01 (03) DOI of Article
10.37434/as2020.01.04
2020 №01 (05)

Automatic Welding 2020 #01
Avtomaticheskaya Svarka (Automatic Welding), #1, 2020, pp.32-38

Regularities of influence of slm process parameters on the formation of single layer from the heat-resistant nickel alloy INCONEL 718

S.V. Adjamsky1, G.A. Kononenko3
1Oles Honchar Dnipro National University. 72 Gagarin Ave., 49000, Dnipro, Ukraine. E-mail: pk_dnu@i.ua
2LLC «Additive Laser Technology of Ukraine». 144 Rybinskaya Str., 49000, Dnipro, Ukraine. E-mail: infor@alt-print.com
3Z.I. Nekrasov Iron and Steel Institute of the NAS of Ukraine. 1 Starodubov Sq., 49000, Dnipro, Ukraine. E-mail: office@isi@nas.ua

In the work the varieties of additive technologies, their advantages and disadvantages were analyzed. The experiments on selective laser melting (SLM) are described in more detail in order to provide the required microstructure of the synthesized material. The modes that provide stable printing of a single layer were experimentally established. The optimal values of scanning speed and laser power for the alloy Inconel 718 were determined. 12 Ref., 6 Fig.
Keywords: process SLM, alloy Inconel 718, laser power, single track, specific volume energy, maximum layer density

Поступила в редакцию 29.10.2019

References

1. Thijs, L., Verhaeghe, F., Craeghs, T. et al. (2010) A study of the micro-structural evolution during selective laser melting of Ti-6Al-4V. Acta Mater., 58(9), 3303-3312. https://doi.org/10.1016/j.actamat.2010.02.004
2. Simonelli, M., Tse, Y.Y., Tuck, C. (2014) Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Materials Sci. and Eng. A, 616, 1-11. https://doi.org/10.1016/j.msea.2014.07.086
3. Frazier, W.E. (2014) Metal additive manufacturing: A review. J. of Materials Eng. and Performance, 23(6), 1917-1928. https://doi.org/10.1007/s11665-014-0958-z
4. Parimi, L.L., Clark, R.G.A.D., Attallah, M.M. (2014) Microstructural and texture development in direct laser fabricated IN718. Mater. Charact., 89, 102-111. https://doi.org/10.1016/j.matchar.2013.12.012
5. Wu, M.W., Lai, P.H., Chen, J.K. (2016) Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy. Materials Sci. and Eng. A, 650, 295-299. https://doi.org/10.1016/j.msea.2015.10.045
6. Chlebus, E. et al. (2011) Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Materials Characterization, 62(5), 488-495. https://doi.org/10.1016/j.matchar.2011.03.006
7. Vilaro, T., Colin, C., Bartout, J.D. As-fabricated and heattreated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metallurgical and Materials Transact. A, 42(10), 3190-3199. https://doi.org/10.1007/s11661-011-0731-y
8. Qiu, C., Adkins, N.J.E., Attallah, M.M. (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Materials Sci. and Eng. A, 578, 230-239. https://doi.org/10.1016/j.msea.2013.04.099
9. Santos, E.C. et al. (2006) Rapid manufacturing of metal components by laser forming. Int. J. of Machine Tools & Manufacture, 46, 1459-1468. https://doi.org/10.1016/j.ijmachtools.2005.09.005
10. Zakiev, S. et al. (2006) Modelling of the thermal processes that occur during laser sintering of reacting powder compositions. Appl. Phys. A, 84, 123-129. https://doi.org/10.1007/s00339-006-3586-0
11. Meier, H., Haberland, C. (2008) Experimental studies on selective laser melting of metallic parts. Materialwissenschaft und Werkstofftechnik, 39(9), 665-670. DOI: 10.1002/mawe.200800327. https://doi.org/10.1002/mawe.200800327
12. Islam, M., Purtonen, T., Piili, H. (2013) Temperature profile and imaging analysis of laser additive. Physics Procedia, 41, 828-835. https://doi.org/10.1016/j.phpro.2013.03.156
>