Eng
Ukr
Rus
Print
2020 №04 (01) DOI of Article
10.37434/as2020.04.02
2020 №04 (03)

Automatic Welding 2020 #04
Avtomaticheskaya Svarka (Automatic Welding), #4, 2020, pp.11-21

Peculiarities of producing layered metal composite materials on aluminuim base

Yu.V. Falchenko, L.V. Petrushinets, E.V. Polovetskii
E.O. Paton Electric Welding Institute of the NAS of Ukraine, 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Analysis of publications devoted to producing layered composite materials on aluminium base was performed. The methods of joining thin-foil materials were studied, which allow producing layered joints with different number of intermediate layers. It is shown that the main welding methods, allowing production of joints with a layered structure, are rolling, ultrasonic, explosion, and diffusion welding, and reaction sintering. Analysis of publications showed that the joining process can be conducted, both in vacuum and in air. Joining foil from titanium and aluminium in the welding modes below the aluminium melting temperature (660 °C) allows producing joints without intermetallic phase formation between the layers. In order to improve the strength of the produced composites, it is rational to apply during welding a technological operation in the form of current passing or postweld heat treatment of layered composite materials that provides increase of reactivity between the aluminium and titanium layers and formation of intermetallic phase as the reaction product. 31 Ref., 7 Fig.
Keywords: metal layered composite materials, joining methods, joint zone, intermetallic phase
Received: 29.01.2020

References

1. Arzamasov, B.N., Makarova, V.I., Mukhin, G.G. et al. (2008) Materials science: Manual for Higher Education Instit. Moscow, N.E. Bauman MGTU [in Russian].
2. Tyalina, L.N., Minaev, A.M., Pruchkin, V.A. (2011) New composite materials: Manual. Tambov, GOU VPO TGTU [in Russian].
3. Kovtunov, A.I., Myamin, S.V., Semistenova, V.V. (2017) Layered composite materials: Electron manual. Tolyatti, TGU [in Russian].
4. Wadsworth J., Lesuer D.R. (2000) Ancient and modern laminated composites - from the Great Pyramid of Gizeh to Y2K. Materials Characterization, 4-5, 289-313. https://doi.org/10.1016/S1044-5803(00)00077-2
5. Gurevich, L.M. (2013) Mechanisms of structure formation at interaction of titanium with aluminium melt. Izvestiya VolgGTU, Seriya Problemy Materialovedeniya, Svarki i Prochnosti v Mashinostroenii, 6, 6-13 [in Russian].
6. Kovtunov, A.I., Myamin, S.V. (2013) Investigation of technological and mechanical properties of layred titaniumaluminium composite materials produced by liquid-phase method. Aviats. Materialy i Tekhnologii, 1, 9-12 [in Russian].
7. Kuzmin, K.A., Lazurenko, D.V., Mats, O.E. (2014) Formation of "titanium-titanium aluminide" composite materials by the method of spark plasma sintering. In: Proc. of 1st Int. Sci.-Pract. Conf. on Actual Problems in Machine-Building (Novosibirsk, 26 March 2014). Novosibirsk, NGTU, 514520.
8. Yanbo Sun, Sanjay Kumar Vajpai, Kei Ameyama, Chaoli Ma (2014) Fabrication of multilayered Ti-Al intermetallics by spark plasma sintering. Journal of Alloys and Compounds, 5, 734-740. https://doi.org/10.1016/j.jallcom.2013.09.215
9. Sinchuk, A.V., Tsurkin, V.N., Ivanov, A.V. (2016) Effect of electric current on reaction sintering of Ti-Al layered system. Konstruktsii iz Kompozitsionnykh Materialov, 1, 24-31 [in Russian].
10. Vasyanovich, N.A., Tsurkin, V.N. (2016) Basic principles of ferroelectric synthesis of metal-intermetallic laminate Ti-Al3Ti from foil package Al-Ti. Electron. Obrabotka Materialov, 52, 33-39 [in Russian]. https://doi.org/10.3103/S1068375516030121
11. Kurkin, S.E. (2016) Technology of production of layered aluminium-titanium composite material strengthened with intermetallics. Novaya Nauka: Teoreticheskyi i Prakticheskyi Vzglyad, 5, 192-196 [in Russian].
12. Hailiang Yu, Cheng Lu, A. Kiet Tieu et al. (2016) Annealing effect on microstructure and mechanical properties of Al/Ti/ Al laminate sheets. Materials Science & Engineering A, 13, 195-204. https://doi.org/10.1016/j.msea.2016.02.087
13. Gajanan P. Chaudhari, Viola Acoff (2009) Cold roll bonding of multi-layered bi-metal laminate composites. Composites Science and Technology, 10, 1667-1675. https://doi.org/10.1016/j.compscitech.2009.03.018
14. Hailiang Yu, A. Kiet Tieu, Cheng Lu, Charlie Kong (2014) Abnormally high residual dislocation density in pure aluminum after Al/Ti/Al laminate annealing for seven days. Philosophical Magazine Letters, 11, 732-740. https://doi.org/10.1080/09500839.2014.971902
15. Kaya I., Cora О.N., Acar D., Koс M. (2018) On the Formability of Ultrasonic Additive Manufactured Al-Ti Laminated Composites. Metallurgical and Materials Transactions A, 49, 5051-5064. https://doi.org/10.1007/s11661-018-4784-z
16. Kaya I., Cora O.N., Koc M. (2019) Formability of Ultrasonically Additive Manufactured Ti-Al Thin Foil Laminates. Materials, 12, 1-16. https://doi.org/10.3390/ma12203402
17. Sridharan N., Wolcott P., Dapino M., Babua S.S. (2016) Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing. Scripta Materialia, 17, 1-5. https://doi.org/10.1016/j.scriptamat.2016.02.013
18. Wolcott P.J., Sridharan N., Babu S.S. et al. (2016) Characterisation of Al-Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 2, 114-123. https://doi.org/10.1179/1362171815Y.0000000072
19. Obielodan J.O., Stucker B.E., Martinez E. et al. (2011) Optimization of the shear strengths of ultrasonically consolidated Ti/Al 3003 dual-material structures. Journal of Materials Processing Technology, 211, 988-995. https://doi.org/10.1016/j.jmatprotec.2010.12.017
20. Liang Qin, Hui Wang, Shengqiang Cui et al. (2017) Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing. Journal of Materials Engineering and Performance, 7, 3579-3587. https://doi.org/10.1007/s11665-017-2785-5
21. Krasnov, E.I., Shteinberg, A.S., Shavnev, A.A., Berezovsky, V.V. (2013) Examination of layered metallic composite materials of Ti-TiAl3 system. Aviats. Materialy i Tekhnologii, 3, 16-19 [in Russian]. https://doi.org/10.18577/2307-6046-2016-0-7-3-3
22. Liang Qina, Minyu Fan, Xunzhong Guo, Jie Tao (2018) Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing. Vacuum, 155, 96-107. https://doi.org/10.1016/j.vacuum.2018.05.021
23. Minyu Fan, Joseph Domblesky, Kai Jin et al. (2016) Effect of original layer thicknesses on the interface bonding and mechanical properties of TiAl laminate composites. Materials & Design, 5, 535-542. https://doi.org/10.1016/j.matdes.2016.03.102
24. Fan M., Luo Z., Fu Z. et al. (2018) Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites. Vacuum, 154, 101-109. https://doi.org/10.1016/j.vacuum.2018.04.047
25. Thiyaneshwaran N., Sivaprasad K., Ravisankar B. (2018) Nucleation and growth of TiAl3 intermetallic phase in diffusion bonded Ti/Al Metal Intermetallic Laminate. Scientific Reports, 8, 1-8. https://doi.org/10.1038/s41598-018-35247-0
26. Xu L., Cui Y.Y., Hao Y.L., Yang R. (2006) Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Materials Science and Engineering: A, 435-436, 638-647. https://doi.org/10.1016/j.msea.2006.07.077
27. Shaoyuan Lyu, Yanbo Sun, Lei Ren et al. (2017) Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites. Intermetallics, 90, 16-22. https://doi.org/10.1016/j.intermet.2017.06.007
28. Lazurenko D.V., Bataev I.A., Mali V.I. et al. (2016) Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment. Materials & Design, 102, 122-130. https://doi.org/10.1016/j.matdes.2016.04.037
29. Foadian F., Soltanieh M., Adeli M., Etminanbakhsh M. (2014) A study on the formation of intermetallics during the heat treatment of explosively welded Al-Ti multilayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45, 1823-1832. https://doi.org/10.1007/s11661-013-2144-6
30. Foadian F., Soltanieh M., Adeli M., Etminanbakhsh M. (2014) The formation of TiAl3 during heat treatment in explosively welded Ti-Al multilayers. Iranian Journal of Materials Science and Engineering, 11, 12-19.
31. Fronczek D.M., Wojewoda-Budka J., Chulist R. et al. (2016) Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Materials and Design, 91, 80-89. https://doi.org/10.1016/j.matdes.2015.11.087
>