Eng
Ukr
Rus
Print

2024 №06 (08) DOI of Article
10.37434/as2024.06.01
2024 №06 (02)

Automatic Welding 2024 #06
"Avtomatychne Zvaryuvannya" (Automatic Welding), #6, 2024, pp. 3-9

Diffusion bonding of TI6-4 alloy through multilayer interlayers of an eutectic composition based on Ti–Cu system

T.V. Melnychenko, A.I. Ustinov, O.Yu. Klepko, O.V. Samofalov

E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: melnychenko21@ukr.net

The regularities of diffusion bonding of the titanium alloy Ti6-4 through multilayer interlayers of eutectic composition based on Ti–Cu system, produced by electron beam deposition in vacuum, were investigated in this work. The microstructure and mechanical properties of the joints were analyzed using scanning electron microscopy and by determining their shear strength. It is shown that multilayer interlayers provide defect-free joints without degradation of titanium alloy properties at a temperature of 920…950 ºC, corresponding to the melting interval of the interlayer. It is established that the nature of the reaction interaction of the components of the interlayer and Ti6-4 alloy during heating depends on the temperature and melting interval of the multilayer interlayer and determines the microstructure and phase composition of the joint. Absence of continuous layers of intermetallics (TiCu, Ti2Cu) in the joint and formation of a dispersed Widmanstätten structure with copper and nickel content of < 7 at.% provide the joint strength at the level of the Ti6-4 alloy. 15 Ref., 5 Tabl., 8 Fig.
Keywords: multilayer foil, EB-PVD, Ti6-4 alloy, diffusion bonding, microstructure, shear strength


Received: 31.07.2024
Received in revised form: 23.10.2024
Accepted: 26.11.2024

References

1. Leyens, C., Peters, M. (2003) Titanium and titanium alloys: Fundamentals and applications. WILEY-VCH, Weinheim. https://doi.org/10.1002/3527602119
2. Lutjering, G., Williams, J.C. (2007) Titanium. 2 ed. Springer-Verlag, Berlin.
3. Balasubramanian, T., Balasubramanian, V., Muthumanikkam, M. (2011) Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints. J. Mater. Eng. and Performance, 20, 1620-1630. https://doi.org/10.1007/s11665-010-9822-y
4. Ahmed, Y.M., Salleh, K., Sahari, M., Ishak, M. (2012) Welding of titanium (Ti-6Al-4V) alloys: A review. In: Proc. of the National Graduate Conf., Kajang, Malaysia, 8-10.
5. Zamkov, V.N., Prilutsky, V.P., Petrichenko, I.K. et al. (2001) Effect of the method of fusion welding on properties of welded joints in alloy Ti-6AI-4V. The Paton Welding J., 4, 2-6.
6. Murthy, K.K., Potluri, N.B., Sundaresan, S. (1997) Fusion zone microstructure and fatigue crack growth behaviour in Ti-6Al-4V alloy weldments. Mater. Sci. and Technol., 13(6), 503-510. https://doi.org/10.1179/mst.1997.13.6.503
7. Borisova, E.A. (1980) Titanium alloys. Metallography of titanium alloys. Metallurgiya, Moscow [in Russian].
8. Shapiro, A., Rabinkin, A. (2003) State of the art of titanium-based brazing filler metals. Welding J., 82(10), 36-43.
9. Elrefaey, A., Tillmann, W. (2009) Effect of brazing parameters on microstructure and mechanical properties of titanium joints. J. of Materials Proc. Technology, 209, 4842-4849. https://doi.org/10.1016/j.jmatprotec.2009.01.006
10. Shapiro, A.E. (2016) Brazing of conventional titanium alloys. ASM Metal Handbook, 6, 1-25. https://doi.org/10.31399/asm.hb.v06.a0009239
11. Ustinov, A.I., Falchenko, Yu.V., Ishchenko, A.Ya et al. (2008) Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics, 16, 1043-1045. https://doi.org/10.1016/j.intermet.2008.05.002
12. Murray, J.L. (1983) The Cu-Ti (copper-titanium) system. Bulletin of Alloy Phase Diagrams, 4(1), 81-95. https://doi.org/10.1007/BF02880329
13. Cacciamani, G., Schuster, J.C., Effenberg, G., Ilyenko, S. (2006) Cu-Ni-Ti (copper-nickel-titanium). Light metal ternary systems: Phase diagrams, crystallographic and thermodynamic data, 11, 266-283.
14. Ustinov, A.I., Melnychenko, T.V., Demchenkov, S.A. (2021) Structural mechanism of plastic deformation of Al/а-Si multilayer foils at heating under load. Materials Science and Engineering: A, 810, 141030. https://doi.org/10.1016/j.msea.2021.141030
15. Ganjeh, E., Sarkhosh, H., Bajgholi, M.E. et al. (2012) Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys. Mater. Charact., 71, 31-40. https://doi.org/10.1016/j.matchar.2012.05.016

Advertising in this issue: