"Avtomatychne Zvaryuvannya" (Automatic Welding), #6, 2024, pp. 10-16
Coating for medical application produced by microplasma spraying from Zr-Nb alloy
S.Yu. Maksymov1, S.G. Voinarovych1, S.N. Kaliuzhnyi1, O.N. Kyslytsia1, I.S. Sviridova1, D.L. Alontseva2, R. Yamanoglu3
1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: serge.voy@gmail.com
2D. Serikbayev East Kazakhstan Technical University. 69 Protosanov Str., 070004, Ust-Kamenogorsk, Kazakhstan.
3Department of Metallurgical and Materials Engineering, College of Engineering, Kocaeli University, Kocaeli 41380, Turkey.
E-mail: ryamanoglu@kocaeli.edu.tr
The work deals with the technology of microplasma spraying of biocompatible coatings from Zr-Nb alloy and their properties.
On the surface of the porous Zr-Nb coating with the most developed surface microrelief, the presence of both open macropores
of up to 300 μm in size and micropores of up to 10 μm in size was revealed. The X-ray phase analysis of the formed Zr-Nb
coatings showed the presence of phases of α-solid solution of Zr, oxide (ZrO2), nitride (ZrN) and carbide (ZrNbC2). The
corrosion resistance of the microplasma Zr-Nb coating and Ti6Al4V alloy in a solution of 0.9 % NaCl, which simulates
the environment of the human body, was determined. It is assumed that the Zr-Nb alloy coatings produced by microplasma
spraying on the surfaces of existing Ti6Al4V endoprostheses will allow for future improvement of corrosion resistance and
osseointegration between the bone and the implant. 26 Ref., 2 Tabl., 5 Fig.
Keywords: microplasma spraying, biocompatible coating, Zr-Nb alloy, surface morphology, adhesion strength, corrosion resistance
Received: 09.09.2024
Received in revised form: 29.10.2024
Accepted: 13.12.2024
References
1. Abd-Elaziem, W., Darwish, M.A., Hamada, A., Daoush, W.M. (2024) Titanium-based alloys and composites for orthopaedic implants applications: A comprehensive review. Materials & Design, 241, 112850.
https://doi.org/10.1016/j.matdes.2024.1128502. Quinn, J., McFadden, R., Chan, C.-W., Carson, L. (2020) Titanium for orthopaedic applications: An overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. Science, 23(11), 101745.
https://doi.org/10.1016/j.isci.2020.1017453. Tepla, T., Pleshakov, E., Sieniawski, J., Bohun, L. (2022) Causes of degradation of titanium dental implants. Ukrainian J. of Mechanical Engineering and Mater. Sci., 8(4), 31-40.
https://doi.org/10.23939/ujmems2022.04.0314. Wang, H., Liu, J., Wang, C. et al. (2020) The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration. J. of Mater. Sci. & Technology, 63, 18-26.
https://doi.org/10.1016/j.jmst.2019.12.0305. Alontseva, D.L., Ghassemieh, E., Voinarovych, S. et al. (2019) Characterisation of the microplasma spraying of biocompatible coating of titanium. J. of Microscopy, 279(3), 148-157.
https://doi.org/10.1111/jmi.128496. Woźniak, A., Staszuk, M., Reimann, Ł. et al. (2021) The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application. Archives of Civil and Mechanical Engineering, 21(4), 148. DOI: https://doi.org/10.1007/s43452-021-00297-1
https://doi.org/10.1007/s43452-021-00297-17. Mehjabeen, A., Song, T., Xu, W. et al. (2018) Zirconium alloys for orthopaedic and dental applications. Advanced Engineering Materials, 20(9), 1800207.
https://doi.org/10.1002/adem.2018002078. Zhou, F.Y., Wang, B.L., Qiu, K.J. et al. (2012) Microstructure, mechanical property, corrosion behavior, andin vitrobiocompatibility of Zr-Mo alloys. J. of Biomedical Materials Research Pt B: Applied Biomaterials, 101B(2), 237-246.
https://doi.org/10.1002/jbm.b.328339. Stich, T., Alagboso, F., Křenek, T. et al. (2021) Implant-bone-interface: reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioengineering & Translational Medicine, 7, e10239.
https://doi.org/10.1002/btm2.1023910. Cheikho, K., Laurent, C., Ganghoffer, J.F. (2022) An advanced method to design graded cylindrical scaffolds with versatile effective cross-sectional mechanical properties. J. of the Mechanical Behavior of Biomedical Materials, 125, 104887.
https://doi.org/10.1016/j.jmbbm.2021.10488711. Wang, R., Ni, S., Ma, L., Li, M. (2022) Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Frontiers in Bioengineering and Biotechnology, 10, 973297.
https://doi.org/10.3389/fbioe.2022.97329712. Wang, H., Liu, J., Wang, C. et al. (2020) The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration. J. of Mater. Sci. & Technol., 63, 18-26.
https://doi.org/10.1016/j.jmst.2019.12.03013. Li, B.E., Li, Y., Min, Y. et al. (2015) Synergistic effects of hierarchical hybrid micro/nanostructures on the biological properties of titanium orthopaedic implants. RSC Advances, 5(61), 49552-49558.
https://doi.org/10.1039/C5RA05821J14. Cheng, B., Niu, Q., Cui, Y. et al. (2017) Effects of different hierarchical hybrid micro/nanostructure surfaces on implant osseointegration. Clinical Implant Dentistry and Related Research, 19(3), 539-548.
https://doi.org/10.1111/cid.1247115. Matsuzaka, K., Frank Walboomers, X., Yoshinari, M. et al. (2003) The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials, 24(16), 2711-2719.
https://doi.org/10.1016/S0142-9612(03)00085-116. Nakashima, Y., Hayashi, K., Inadome, T. et al. (1997) Hydroxyapatite-coating on titanium arc sprayed titanium implants. J. of Biomedical Materials Research, 35(3), 287-298.
https://doi.org/10.1002/(SICI)1097-4636(19970605)35:3<287::AID-JBM3>3.3.CO;2-U17. Jahani, B. (2021). The effects of surface roughness on the functionality of Ti13Nb13Zr orthopedic implants. Biomedical J. of Scientific & Technical Research, 38(1), 30058-30067.
https://doi.org/10.26717/BJSTR.2021.38.00610418. Lewallen, E.A., Trousdale, W.H., Thaler, R. et al. (2021) Surface roughness of titanium orthopaedic implants alters the biological phenotype of human mesenchymal stromal cells. Tissue Engineering Pt A, 27, 1503-1516.
https://doi.org/10.1089/ten.tea.2020.036919. Borisov, Yu.S., Kislitsa, A.N., Vojnarovich, S.G. (2006) Peculiarities of the process of microplasma wire spraying. The Paton Welding J., 4, 21-25.
20. Voinarovych, S.G., Alontseva, D.L., Kyslytsia, O.N. et al. (2021) Fabrication and characterization of Zr microplasma sprayed coatings for medical applications. Advances in Mater. Sci., 21(2), 93-105.
https://doi.org/10.2478/adms-2021-001321. Fousova, M., Vojtech, D., Jablonska, E. et al. (2017) Novel approach in the use of plasma spray: Preparation of bulk titanium for bone augmentations. Materials, 10(9), 987.
https://doi.org/10.3390/ma1009098722. Alontseva, D., Ghassemieh, E., Voinarovych, S. et al. (2020) Manufacturing and characterisation of robot assisted microplasma multilayer coating of titanium implants: biocompatible coatings for medical implants with improved density and crystallinity. Johnson Matthey Technology Review, 64(2), 180-191.
https://doi.org/10.1595/205651320X1573728326828423. Cheikho, K., Laurent, C., Ganghoffer, J.F. (2022) An advanced method to design graded cylindrical scaffolds with versatile effective cross-sectional mechanical properties. J. of the Mechanical Behavior of Biomedical Materials, 125, 104887.
https://doi.org/10.1016/j.jmbbm.2021.10488724. Rosalbino, F., Macciò, D., Scavino, G. (2023) Corrosion behaviour of Zr-Ag alloys for dental implant application. Mater. Sci. and Applications, 14(11), 501-514.
https://doi.org/10.4236/msa.2023.141103325. Kirichenko, V.G. (2015) Nuclear physics of metal sciences of power engineering alloys. Chapt. 1, Kharkiv, KhNU [in Russian]
26. Peron, M., Bertolini, R., Cogo, S. (2022) On the corrosion, stress corrosion and cytocompatibility performances of ALD TiO2 and ZrO2 coated magnesium alloys. J. of the Mechanical Behavior of Biomedical Materials, 125, 104945.
https://doi.org/10.1016/j.jmbbm.2021.104945
Advertising in this issue: