Eng
Ukr
Rus
Print

2023 №01 (01) DOI of Article
10.37434/tdnk2023.01.02
2023 №01 (03)

Technical Diagnostics and Non-Destructive Testing 2023 #01
Technical Diagnostics and Non-Destructive Testing #1, 2023, pp. 13-21

Diagnostics of gear pair damage using the methods of biperiodically correlated random processes. Part 2. Investigation of vibration signals of the wind power generator gearbox

R.M. Yuzefovych2, I.M. Javorskyj3, O.V. Lychak1, G.R. Trokhym1, M.Z. Varyvoda1, Р.O. Semenov4

1G.V. Karpenko Physico-Mechanical Institute of NASU. 5 Naukova str., 79060, Lviv, Ukraine. Е-mail: roman.yuzefovych@gmail.com
2Bydgoszcz University of Sciences and Technology. 7, Prof. S. Kaliskiego al., 85796, Bydgoszcz, Poland.
3Lviv Polytechnic National University. 12 S. Bandery str., 79000, Lviv, Ukraine.
4Odessa National Maritime University. 34 I. Mechnikova str., 65029, Odesa, Ukraine.

The results of processing the vibration signals of the wind power generator gearbox are given. The model of vibration in the form of bi-periodically correlated random processes (BPCRP), which describes its stochastic repeatability with two different periods, is considered. Least squares (LS) estimates of the periods of the deterministic part of the vibration signal and the temporal changes of power of its stochastic part were obtained. The amplitude spectra of deterministic oscillations and dispersion of stochastic oscillations for different degrees of gearbox damage were analyzed. The most effective indicators of defect development, which are formed on the basis of amplitude spectra, are proposed for practical use. The correlation structure of the stochastic vibration component of the wind turbine gearbox was analyzed. 20 Ref., 1 Tabl., 16 Fig.
Keywords: wind power generator gearbox, vibration, periodical non-stationarity, deterministic oscillations, correlation function, defect development indicator

Received: 01.02.2023

References

1. Javorskyj, I.M. (2013) Mathematical models and analysis of stochastic oscillations. PMI, Lviv [in Ukrainian].
2. Jaworskyj, I., Matsko, I., Yuzefovych, R., Zakrzewski, Z. (2016) Coherence function of interrelated Periodically Nonstationary Random Processes. Radioelectronics and Communication Systems, 59(3), 128-140. https://doi.org/10.3103/S0735272716030043
3. Javorskyj, I.M., Yuzefovych, R.M., Lychak, O.V. et al. (2022) Diagnostics of gear pair damage using the methods of bi-periodically correlated random processes. Part 1. Theoretical aspects of the problem. Tekh. Diahnost. ta Neruiniv. Kontrol, 4, 4-11 [in Ukrainian].
4. Javorskyj, I., Kravets, I., Matsko, I., Yuzefovych, R. (2017) Periodically correlated random processes: application in early diagnostics of mechanical systems. Mech. Syst. Signal Process., 83, 406-438. https://doi.org/10.1016/j.ymssp.2016.06.022
5. Antoni, J., Bonnardot, F., Raad, A., El Badaoui, M. (2004) Cyclostationary modeling of rotating machine vibration signals. Mech. Syst. Signal Process., 18(6), 1285-1314. https://doi.org/10.1016/S0888-3270(03)00088-8
6. Antoni, J. (2009) Cyclostationarity by examples. Mech. Syst. Signal Process., 23(4), 987-1036. https://doi.org/10.1016/j.ymssp.2008.10.010
7. Randall, R.B., Antoni, J. (2011) Rolling element bearing diagnostics - A tutorial. Mech. Syst. Signal Process., 25(2), 485-520. https://doi.org/10.1016/j.ymssp.2010.07.017
8. Randall, R.B., Antoni, J., Chobsaard, S. (2001) The relationship between spectral correlation and envelope analysis. Mech. Syst. Signal Process., 15(5), 945-962. https://doi.org/10.1006/mssp.2001.1415
9. Antoni, J. (2007) Cyclic spectral analysis in practice. Mech. Syst. Signal Process., 21(2), 597-630. https://doi.org/10.1016/j.ymssp.2006.08.007
10. Abboud, D., El Badaoui, M., Smith, W., Randall, B. (2019) Advanced bearing diagnostics: A comparative study of two powerful approaches. Mech. Syst. Signal Process., 114, 604- 627. https://doi.org/10.1016/j.ymssp.2018.05.011
11. Wang, D., Zhao, X., Kou, L.-L. et al. (2019) A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis. Mech. Syst. Signal Process., 122, 754-768. https://doi.org/10.1016/j.ymssp.2018.12.055
12. Patel, V.N., Tandon, N., Pandey, R.K. (2012) Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator. Measurement, 45(5), 960-970. https://doi.org/10.1016/j.measurement.2012.01.047
13. Borghesani, P., Pennacchi, P., Randall, R.B. et al. (2013) Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech. Syst. Signal Process., 36(2), 370-384. https://doi.org/10.1016/j.ymssp.2012.11.001
14. Betea, B., Dobra, P., Gherman, M.-C., Tomesc, L. (2013) Comparison between envelope detection methods for bearing defects diagnose. IFAC Proc., 46(6), 137-142. https://doi.org/10.3182/20130522-3-RO-4035.00010
15. Antoni, J. (2006) The spectral kurtosis: a useful tool for characterizing non-stationary signals. Mech. Syst. Signal Process., 20(2), 282-307. https://doi.org/10.1016/j.ymssp.2004.09.001
16. Antoni, J., Randall, R.B. (2006) The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process., 20(2), 308-331. https://doi.org/10.1016/j.ymssp.2004.09.002
17. Wang, D., Tse, P.W., Tsui, K.L. (2013) An enhanced Kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process., 35(1-2), 176-199. https://doi.org/10.1016/j.ymssp.2012.10.003
18. Sawalhi, N., Randall, R.B., Endo, H. (2007) The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process, 31(6), 2616-2633. https://doi.org/10.1016/j.ymssp.2006.12.002
19. Borghesani, P., Pennacchi, P., Ricci, R., Chatterton, S. (2013) Testing second order cyclostationarity in the squared envelope spectrum of non-white vibration signals. Mech. Syst. Signal Process., 40(1), 38-55. https://doi.org/10.1016/j.ymssp.2013.05.012
20. Courrech, J., Gaudel, M. (1987) Envelope analysis the key to rolling-element bearing diagnosis. Brüel & Kjær, Denmark.

Advertising in this issue: