Eng
Ukr
Rus
Печать
2015 №02 (02) DOI of Article
10.15407/tdnk2015.02.03
2015 №02 (04)

Техническая диагностика и неразрушающий контроль 2015 #02
Техническая диагностика и неразрушающий контроль, №2, 2015 стр. 16-25
 
Застосування методу акустичної емісії для діагностування корпусів ядерних реакторів (Огляд)
Повідомлення ІІІ. Нормативна база і перспективи застосування методу акустичної емісії в ядерній енергетиці
 
Авторы:
І.М. Неклюдов, З.Т. Назарчук, В.Р. Скальський, Л.Н. Добровольська
G.V. Karpenko Physico-Mechanical Institute, NASU

Реферат:
Постійне оновлення нормативної бази діагностування корпусів реакторів АЕС відбувається на фоні кількох конкуруючих тенденцій. З одного боку, маємо наростаючу стурбованість старінням діючого енергогенеруючого обладнання, ресурс якого неухильно наближається до свого проектного закінчення, а з іншого – дві катастрофи, що не пов’язані з таким ста¬рінням. Катастрофа 1986 р. на Чорнобильській АЕС відбулась через суттєві недоліки конструкції та ненормативні дії обслуговуючого персоналу, а 2011 р. на японській АЕС Фукусіма – через природній катаклізм, у якому поєднались землетрус та цунамі позапроектних рівнів. І хоча згадані катастрофи завдали відчутного удару по репутації атомної енергетики, АЕС і далі залишаються одним із головних претендентів на задоволення зростаючих енергетичних потреб людства. Сучасні тенденції створення методів діагностування стану ядерного енергетичного обладнання вимагають розвитку наявної і розроблення нової нормативної бази для їх успішного застосування. Бібліогр. 41.
 
Ключові слова: акустична емісія, ядерна енергетика, нормативна база діагностування
 
First acoustic-emission (AE) measuring systems of commercial modification were developed, and correlations between AE signal parameters and fracture propagation characteristics were established in the first half of the XXth century. This was exactly the basis for awakening the interest of nuclear energy technology developers and operators to this new method, which will eventually become an effective addition to the existing technologies of non-destructive testing (NDT) for detection and monitoring of nuclear reactor body defects. In view of the extremely high requirements made to such facilities in terms of their quality and integrity, significant efforts were focused on AE method development and its introduction into industry already at the end of 1970ties. Practical realization of the techniques and means for AE monitoring and diagnostics of the condition of NPP reactor bodies confirmed the high effectiveness of the method, although different opinions were expressed on this subject at the start of their introduction. 41 References.
 
Keywords: acoustic emission, nuclear power engineering, diagnostics normative base
  1. (2002) Regulatory control of nuclear power plants. Pt A (Textbook). IAEA Training Course Series No.15. Vienna: International Atomic Energy Agency.
2. (2000) Safety of nuclear power plants: Design. IAEA Safety Requirements No. NS-R-1. IAEA Safety Standards Series. Ibid.
3. Hutton, P. H. (1988) Acoustic emission for continuous monitoring of light-water reactor systems: A status review. Materials Evaluation, 46(2), 241–246.
4. Hutton, P. H., Kurtz, R. J., Friesel, M. A. (1989) An overview of development and application of acoustic emission methods in the United States. Nuclear Eng. and Design, 113, 59–69. https://doi.org/10.1016/0029-5493(89)90296-3
5. Hutton, P. H. (1987) Progress for on-line acoustic emission monitoring of cracks in reactor systems. Ibid., 98, 135–140. https://doi.org/10.1016/0029-5493(87)90161-0
6. (2012) ASTM E1139/E1139M–12: Standard practice for continuous monitoring of acoustic emission from metal pressure boundaries. West Conshohocken: ASTM International. DOI: 10.1520/E1139_E1139M-12. https://doi.org/10.1520/E1139_E1139M-12
7. (2012) ASTM E1211/E1211M–12: Standard practice for leak detection and location using surface-mounted acoustic emission sensors. West Conshohocken, ASTM International. DOI: 10.1520/E1211_E1211M-12. https://doi.org/10.1520/E1211_E1211M-12
8. (1994) Inservice inspection code case acceptability; Regulatory guide 1.147; ASME Section XI; Division 1. Office of Nuclear Regulatory Research, USNRC. Washington, U.S. Nuclear Regulatory Commission, Rev. 11.
9. (1999) Inservice inspection code case acceptability; Regulatory guide 1.147; ASME Section XI; Division 1. Office of Nuclear Regulatory Research, USNRC. Washington, U.S. Nuclear Regulatory Commission, Rev. 12.
10. Serpan, C.Z., Mayfield, M.E., Muscara, J.U.S. (1997) Nuclear Regulatory Commission research for primary system integrity regulations. Nuclear Eng. and Design, 171, 1–14. https://doi.org/10.1016/S0029-5493(96)01313-1
11. Nondestructive examination. 2000 Addenda to Section V of 1998 ASME Boiler and pressure vessel code – An international code. The American Society of Mechanical Engineers, New York, 2000.
12. Hutton, P.H., Friesel, M.A., Dawson, J.F. (1993) Continuous AE crack monitoring of a dissimilar metal weldment at Limerick Unit 1. In: Research Report NUREG/CR-5963, PNL-8844. Richland, Pacific Northwest Laboratory.
13. (2000) Rules for inservice inspection of nuclear power plant components. 2000 Addenda to Section XI of 1998 ASME Boiler and pressure vessel code – An international code. The American Society of Mechanical Engineers, New York.
14. (2003) Inservice inspection code case acceptability; Regulatory guide 1.147; ASME Section XI; Division 1. Office of Nuclear Regulatory Research, USNRC. Washington, U.S. Nuclear Regulatory Commission, Rev. 13.
15. (2005) Inservice inspection code case acceptability; Regulatory guide 1.147; ASME Section XI; Division 1. Office of Nuclear Regulatory Research, USNRC. Washington, U.S. Nuclear Regulatory Commission, Rev. 14.
16. (2007) Inservice inspection code case acceptability; Regulatory guide 1.147; ASME Section XI; Division 1. Office of Nuclear Regulatory Research, USNRC. Washington, U.S. Nuclear Regulatory Commission, Rev. 15.
17. (2010) Inservice inspection code case acceptability; Regulatory guide 1.147; ASME Section XI; Division 1. Office of Nuclear Regulatory Research, USNRC. Washington, U.S. Nuclear Regulatory Commission, Rev. 16.
18. Bond, L. J. (2012) Fitness tests for old nuclear reactors – Can nuclear power stations operate safely for 80 years? IEEE Spectrum – Inside Technology. http://spectrum.ieee.org/energy/nuclear/fitness-tests-for-old-nuclear-reactors/0 /.
19. Coble, J.B., Ramuhalli, P., Bond, L.J. et al. (2012) Prognostics and health management in nuclear power plants: A review of technologies and applications. In: Report PNNL–21515. Richland, Pacific Northwest National Laboratory.
20. Abram, T., Ion, S. (2008) Generation-IV nuclear power: A review of the state of the science. Energy Policy, 36, 4323–4330. https://doi.org/10.1016/j.enpol.2008.09.059
21. (2012) Rules for in-service inspection of nuclear power plant components, Section XI, ASME Boiler and Pressure Vessel Code. New York, ASME.
22. Harris, D. O., Dunegan, H. L. (1974) Continuous monitoring of fatigue crack growth by acoustic emission techniques. Experimental Mechanics, 11, 71–81. https://doi.org/10.1007/BF02323130
23. Hutton, P.H., Dawson, J.F., Friesel, M.A. et al. (1984) Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 nuclear reactor. In: Research Report NUREG/CR-3693, PNL-5022. Richland, Pacific Northwest Laboratory.
24. Ai, Q., Liu, C.-X., Chen, X.-R. et al. (2010) Acoustic emission of fatigue crack in pressure pipe under cyclic pressure. Nuclear Eng. and Design, 240, 3616–3620. https://doi.org/10.1016/j.nucengdes.2010.05.022
25. Meyer, R.M., Cumblidge, S.E., Ramuhalli, P. et al. (2011) Acoustic emission and guided wave monitoring of fatigue crack growth on a full scale pipe specimen In: Proc. of SPIE – Health Monitoring of Structural and Biological Systems (San Diego, USA, March 6-10, 2011). Society of Photo-Optical Instrumentation Engineers, Bellingham, 7984, 24-1–24-10.
26. (2008) On-line monitoring for improving performance of nuclear power plants. Pt 2: Process and component condition monitoring and diagnostics. IAEA Nuclear Energy Series No. NP-T-1.2. Vienna, International Atomic Energy Agency.
28. Howard, P. (2005) Prognostic technology – new challenges. In:
29. Bond, L.J., Doctor, S.R., Jarrell, D.B., Bond. J.W.D. (2007) Improved economics of nuclear plant life management. In: Proc. of the 2nd Intern. Symp. on Nuclear Power Plant Life Management (Oct. 15–18, 2007; Shanghai). Vienna, International Atomic Energy Agency, 2008, IAEA Paper IAEA-CN-155-008KS.
30. Hayner, G.O., Bratton, R.L., Mizia, R.E., Windes, W.E. (2006) Next generation nuclear plant materials research and development program plan. INL/EXT-06-11701. Rev. 3. Idaho Falls, Idaho National Laboratory. https://doi.org/10.2172/911674
31. Benson, J., Ramakrishnan, S., Majumdar, S. et al. (2007) Automated analysis systems for characterizing eddy current SG inspection data. In: Proc. of the 13th Intern. Symp. on Applied Electromagnetics and Mechanics – ISEM 2007 (Sept. 9–12, 2007, East Lansing). IOS Press, 2007, 157–158.
32. (2008) Automated analysis of array probe eddy current data. In: Report 1015125. Palo Alto, Electric Power Research Institute, Inc.
33. Meyer, R.M., Coble, J.B., Ramuhalli, P., Bond, L.J. (2011) Advanced instrumentation, information, and control system technologies: Nondestructive examination technologies – FY11 report. In: Report PNNL–20671. Richland, Pacific Northwest National Laboratory.
34. Buisine, D., Cattant, F., Champredonde, J. et al. (1993) Stress corrosion cracking in the vessel closure head penetrations of French PWRs. In: Proc. of the 6th Intern. Symp. on Environmental Degradations of Materials in Nuclear Power Systems – Water Reactors (Aug. 1–5, 1993). Ed. by R.E. Gold et al. Warrendale, MRS, 1993, 845–853.
35. Richter, H., Böhmert, J., Viehrig, H.-W. (1999) The use of acoustic emission to determine characteristic dynamic strength and toughness properties of steel. Nuclear Eng. and Design, 188, 241–254. https://doi.org/10.1016/S0029-5493(99)00019-9
36. Holbert, K. E., Sankaranarayanan, S., McCready, S. S. (2005) Response of lead metaniobate acoustic emission sensors to gamma irradiation. IEEE Transact. of the Nuclear Society, 52, 2583–2590. https://doi.org/10.1109/TNS.2005.860708
37. (2012) Acoustic emission inspection of RPV lift & internals to meet NUREG-0612 – Industry application. MISTRAS Group Inc., Services Division.
38. (1980) Control of heavy loads at nuclear power plants. Resolution of generic technical activity A–36. U.S. Nuclear Regulatory Commission, Report NUREG–0612. Washington, U.S. NRC.
39. (1993) ANSI N14.6–1978: American national standard for special lifting devices for shipping containers weighing 10,000 pounds (4500 kg) or more for nuclear materials. Washington, American National Standards Institute.
40. Choi, Y.-C., Park, J.-H., Choi, K.-S. (2011) An impact source localization technique for a nuclear power plant by using sensors of different types. ISA Transact., 50, 111–118. https://doi.org/10.1016/j.isatra.2010.08.004
41. (2011) Loose parts monitoring system (LPMS). PakAtom, Newsletter of the Pakistanian Atomic Energy Commisson.
 
Поступила в редакцию 10.07.2015
Підписано до друку 16.06.2015.
 
>