Eng
Ukr
Rus
Print

2017 №01 (02) DOI of Article
10.15407/tdnk2017.01.03
2017 №01 (04)

Technical Diagnostics and Non-Destructive Testing 2017 #01
Technical Diagnostics and Non-Destructive Testing, №1, 2017 pp. 16-24

Methods of prediction of subcritical fracture of structural materials under the impact of cyclic loads (Review)

Milenin A. S.


E. O. Paton Electric Welding Institute of the NAS of Ukraine, 11 Kazimir Malevych str., 03680, Kiev.
E-mail: office@paton.kiev.ua  
Published data on the methods of analytical and numerical prediction of initiation and propagation of subcritical damage in structural materials at cyclic loading, are analyzed. Main directions of elaboration of the respective procedures were outlined, and examples of both engineering rules of modeling different types of fractures, and of fundamental multidimensional models of the state of materials in critical structures under characteristic service conditions are given. 70 References, 2 Figure.
 
Keywords: subcritical damage, cyclic loads, fatigue fracture, prediction

References

1. Troshchenko V.T. Metal strength at alternating loads. – Kiev: Nauk. Dumka, 1978. – 176 p. [in Russian].
2. Rabotnov Yu.N. Mechanics of deformed solid: manual for higher educational establishments. – M.: Nauka, 1988. – 712 p. [in Russian].
3. Jean Lemaitre Rodrigue Desmorat. Engineering Damage Mechanics. Ductile, Creep, Fatigue and Brittle Failures. – Berlin: Springer-Verlag, 2005. – 292 p.
4. Berezin I.Ya., Chernyavskii O.F. Resistance of materials. Fatigue fracture of metals and analysis of strength and fatigue life at alternating stresses. – Chelyabinsk: YuUrGU, 2003. – 76 p. [in Russian].
5. Hobbacher A. Recommendations for Fatigue Design of Welded Joints and Components. Intern. Inst. of Welding, doc. XIII-2151r4-07/XV-1254r4-07. Paris: Intern. Inst. of Welding, 2008. – 149 p.
6. Mikhlayev P.G., Neshpor G.S., Kudriashov V.G. Kinetics of fracture. – M.: Metallurgia, 1979. – 279 p. [in Russian].
7. Miner M. A. (1945) Cumulative damage in fatigue. J. Appl. Mech, № 67, 159-164.
8. Borodii M. V. (2007) Life calculations for materials under irregular nonproportional loading. Strength of Materials, #5, 560-565. https://doi.org/10.1007/s11223-007-0063-8
9. Richart F. E., Newmark N. M. (1948) A hypothesis for the determination of cumulative damage in fatigue. ASTM Proc, № 48, 768-800.
10. Marco S. M., Starkey W. L. (1954) A concept of fatigue damage. Trans. ASME J. Eng. Mater. Tech, № 76, 627-632.
11. Morrow J. D. (ASME Publication, PVP 72) The effect of selected sub-cycle sequences in fatigue loading histories. Random Fatigue Life Prediction, 1986, 43-60.
12. Fatemi A., Yang L. (1998) Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. Int. J. Fatigue, Vol. 20, № 1, 9-34.
13. Lemaitre J., Chaboche J. L. (1978) Aspect phenomenologique de la ruptutre par endommagement. Journal Mecanique Appliquee, № 2, 317-365.
14. Wang T., Lou Z. (1990) A continuum damage model for weld heat affected zone under low cycle fatigue loading. Engineering Fracture Mechanics, № 37, 825-829. https://doi.org/10.1016/0013-7944(90)90081-Q
15. Li C., Qian Z., Li G. (1989) The fatigue damage criterion and evolution equation containing material microparameters. Engineering Fracture Mechanics, , 34-435-443.
16. Jia L.-J., Kuwamura H. (2015) Ductile fracture model for structural steel under cyclic large strain loading. Journal of Constructional Steel Research, № 106, 110-121. https://doi.org/10.1016/j.jcsr.2014.12.002
17. Hommel J.-H., Meschke G. (2010) A hybrid modeling concept for ultra low cycle fatigue of metallic structures based on micropore damage and unit cell models. Intern. J. of Fatigue, № 32, 1885-1894. https://doi.org/10.1016/j.ijfatigue.2010.06.006
18. D. Steglich et al. (2005) Micromechanical modelling of cyclic plasticity incorporating damage. Intern. J. of Solids and Structures, № 42, 337-351. https://doi.org/10.1016/j.ijsolstr.2004.06.041
19. Velikoivanenko E. A. et al. (2016) Simulation of processes of initiation and propagation of subcritical damage of metal in welded pipeline elements at low-cycle loading. Tekh. Diagnost. i Nerazrush. Kontrol, #4, 14-20[inRussian].
20. Xue L. (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics, № 75, 3343-3366. https://doi.org/10.1016/j.engfracmech.2007.07.022
21. Subramanian S. J., Sofronis P., Ponte Castaneda P. (2005) Void growth in power-law creeping solids: Effect of surface diffusion and surface energy. Intern. J. of Solids and Structures, Vol. 42, Is. 24-25, 6202-6225. https://doi.org/10.1016/j.ijsolstr.2005.06.048
22. M. F. Horstemeyer et al. (2000) Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence. Intern. J. of Plasticity, Vol. 16, Is. 7-8, 979-1015. https://doi.org/10.1016/s0749-6419(99)00076-5
23. Andrade E. N. (1910) The viscous flow in metals and allied phenomena. Proceedings of Royal Society, Series A Vol84, 1. https://doi.org/10.1098/rspa.1910.0050
24. Kaчahob Л. М. Teopия пoлзучectи. – М.: Физмatлиt, 1960. – 455 c. (Kachanov L.M. Creep theory. – M.: Fizmatlit, 1960. – 455 p.)
25. Rabotnov Yu.N. Creep of structural elements. – M.: Strojizdat, 1968. – 419 p.
26. J. Lemaitre et al. (2005) Mecanique des materiaux solides. 3eme edition. Malakoff: DUNOD Editeur, Vol84, 596.
27. Hult J. (1979) Capabilities limitations and promises. Mechanisms of Deformation and Fracture. Continuum Damage Mechanics. Oxford: Pergamon, , 233-247. https://doi.org/10.1016/B978-0-08-024258-3.50025-4
28. Leckie F. A., Hayhurst D. R. (1974) Creep rupture of structures. Proc. Royal Soc., London, Vol. 340, 323-347. https://doi.org/10.1098/rspa.1974.0155
29. Hayhurst D. R. (1972) Creep rupture under multi-axial state of stress. J. Mech. Phys. Solids, Vol. 20, № 6, 381-392.
30. Chaboche J. L. (1988) Continuum Damage Mechanics. Parts I, II.. J. of Applied Mechs, Vol. 55, 59-72. https://doi.org/10.1115/1.3173661
31. Taira S. Lifetime of Structures Subjected to Varying Load and Temperature. Creep in Structures. Proceedings of Colloquium «Creep in structures». Ed. by Nicholas J. Hoff. Stanford, July 11–15, 1960. – Berlin: Springer Verlag, 1962. – P. 96–124.
32. Lemaitre J., Plumtree A. (1979) Application of damage concepts to predict creep-fatigue failures. Journal of Engineering Materials and Technology, 101, 284-292. https://doi.org/10.1115/1.3443689
33. Polizzotto C. (2002) Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials. European Journal of Mechanics, Vol. 21, Is. 1, 85-103.
34. Levitas V. I., Altukhova N. S. (2011) Thermodynamics and kinetics of nanovoid nucleation inside elastoplastic material. Acta Materialia, Vol. 5, Is. 18, 7051-7059.
35. Oller S., Salomon O., Onate E. (2005) A continuum mechanics model for mechanical fatigue analysis. Computational Materials Science, № 32, 175-195. https://doi.org/10.1016/j.commatsci.2004.08.001
36. Bonora N., Milella P. P. (2001) Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics. Intern. J. of Impact Engineering, № 26, 53-64. https://doi.org/10.1016/S0734-743X(01)00063-X
37. Pirondi A., Bonora N. (2003) Modeling ductile damage under fully reversed cycling. Computational Materials Science, № 26, 129-141. https://doi.org/10.1016/S0927-0256(02)00411-1
38. Chow C. L., Wei Y. (1991) A model of continuum damage mechanics for fatigue failure. Intern. J. of Fracture, № 50, 301-316.
39. Galtier A., Seguret J. Criteres multiaxiaux en fatigue exploitation en bureau d'etude. (1990) Proposition d'un nouveau critere. Revue Francaise de Mecanique, № 4, 291-299.
40. P. Ballard et al. (1995) High cycle fatigue and a finite element analysis. Fatigue & Fracture of Engineering Materials & Structures, Vol. 18, Is. 3, 397-411.
41. I. V. Papadopoulos et al. (1997) A comparative study of multiaxial high-cycle fatigue criteria for metals. Intern. J. of Fatigue, Vol. 19, Is. 3, 219-235.
42. Ekberg A., Sotkovski P. (2001) Anisotropy and rolling contact fatigue of railway wheels. Intern. J. of Fatigue, Vol. 23, Is. 1, 29-43.
43. Cano F., Constantinescu A., Maitournam H. (2004) Critere de fatigue polyciclique pour des materiaux anisotropes: application aux monocristaux. C. R. Mecanique, Vol. 332, 115-121. https://doi.org/10.1016/j.crme.2003.11.005
44. Liu Y., Mahadevan S. (2005) Multiaxial high-cycle fatigue criterion and life prediction for metals. Intetn. J. of Fatigue, Vol. 27, Is. 7, 790-800.
45. Troshchenko V. T., Pokrovsky V. V., Prokopenko A.V. Crack resistance of materials under cyclic loading. - Kiev: Nauk. Dumka, 1978. - 256 p. [in Russian].
46. Ritchie R. O. (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Intern. J. of Fracture, № 100, 55-83. https://doi.org/10.1023/A:1018655917051
47. Amsterdam E., Grooteman F. (2016) The influence of stress state on the exponent in the power law equation of fatigue crack growth. Intern. J. of Fatigue, Vol. 82, Part3-572-578. https://doi.org/10.1016/j.ijfatigue.2015.09.013
48. I. Marczewska et al. (2006) Practical fatigue analysis of hydraulic cylinders and some design recommendations. Intern. J. of Fatigue, № 28, 1739-1751. https://doi.org/10.1016/j.ijfatigue.2006.01.003
49. S. Jiang et al. (2016) Comparative study between crack closure model and Willenborg model for fatigue prediction under overload effects. Chinese J. of Aeronautics, Vol. 29, Is. 6, 1618-1625.
50. Newman J. C. (1982) Prediction of fatigue crack growth under variable amplitude and spectrum loading using a closure model. ASTM Special technical publication, Vol. 761, 255-277. https://doi.org/10.1520/stp28863s
51. Dill H. D., Saff C. R., Potter J. M. (1980) Effect of Fight Attack Spectrum on Crack Growth. ASTM Special technical publication, Vol. 714, 205-217.
52. Koning A. U. (1981) A simple crack closure model for prediction of fatigue crack growth rates under variable amplitude loading. ASTM Special technical publication, Vol. 743, 63-85. https://doi.org/10.1520/stp28791s
53. Ibrahim M. F. E., Miller K. J. (1980) Determination of fatigue crack initiation life. Fatigue of Engineering Materials and Structures, № 2, 351-360. https://doi.org/10.1111/j.1460-2695.1979.tb01093.x
54. Miller K. J., Ibrahim M. F. E. (1981) Damage accumulation during initiation and short crack growth regimes. Fatigue of Engineering Materials and Structures, № 4, 263-277. https://doi.org/10.1111/j.1460-2695.1981.tb01124.x
55. Barsom M. (1976) Fatigue crack growth under variable amplitude loading in various bridge steels. ASTM Special technical publication, 595, 217-235. https://doi.org/10.1520/stp33374s
56. Suresh S., Ritchie R. O. (1984) Propagation of short fatigue cracks. International Metals Reviews, Vol. 29, № 6, 445-475.
57. Chattopadhyay S. (2008) Design fatigue curves based on small crack growth and crack closure. Journal of Applied Science & Engineering Technology, № 2, 9-15.
58. Endo M., McEvily A. J. (2007) Prediction of the behavior of small fatigue cracks. Materials Science and Engineering, Vol. 468, 51-58. https://doi.org/10.1016/j.msea.2006.09.084
59. Vasek, A., Polak, J. (1991) Low cycle fatigue damage accumulation in Armci-iron. Fatigue of Engineering Materials and Structures, 14(2-3), 193-204. https://doi.org/10.1111/j.1460-2695.1991.tb00653.x
60. Subramanyan S. (1976) A cumulative damage rule based on the knee point of the S–N curve. ASME J. of Engineering Materials and Technology, № 98, 316-321. https://doi.org/10.1115/1.3443383
61. Endo M., McEvily A. J. (2011) Fatigue crack growth from small defects under out-of-phase combined loading. Engineering Fracture Mechanics, Vol. 78, Is. 8, 1529-1541.
62. Manson S. S., Frech J. C., Ensing S. R. (1967) Application of a double linear damage rule to cumulative fatigue. ASTM STP 415, , 384-412.
63. Manson S. S., Halford G. R. (1981) Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Intern. J. Fracture, Vol. 18, 169-192. https://doi.org/10.1007/BF00053519
64. Chen X., Jin D., Kim D. S. (2006) Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. Intern. J. Fatigue, Vol. 28, 289-299. https://doi.org/10.1016/j.ijfatigue.2005.05.003
65. Bourbita F., Remy L. (2016) A combined critical distance and energy density model to predict high temperature fatigue life in notched single crystal superalloy members. Intern. J. of Fatigue, Vol. 84, 17-27. https://doi.org/10.1016/j.ijfatigue.2015.11.007
66. R. Gomuc et al (1990) Analysis of type 316 stainless steel behavior under fatigue, creep and combined fatigue-creep loading. ASME J. of Pressure Vessel Technology, № 112, 240-250. https://doi.org/10.1115/1.2928620
67. E. H. Wong et al. (2016) Creep fatigue models of solder joints: A critical review. Microelectronics Reliability, Vol. 59, 1-12. https://doi.org/10.1016/j.microrel.2016.01.013
68. N. Noraphaiphipaksa et al. (2016) Fretting-contact-induced crack opening/closure behaviour in fretting fatigue. Intern. J. of Fatigue, Vol. 88, 185-196. https://doi.org/10.1016/j.ijfatigue.2016.03.029
69. S. Blason et al. (2016) Proposal of a fatigue crack propagation model taking into account crack closure effects using a modified CCS crack growth model. Procedia Structural Integrity, Vol. 1, 110-117. https://doi.org/10.1016/j.prostr.2016.02.016
70. Sarzosa D. F. B., Godefroid L. B., Ruggieri C. (2013) Fatigue crack growth assessments in welded components including crack closure effects: Experiments and 3-D numerical modeling. Intern. J. of Fatigue, Vol. 47, 279-291. https://doi.org/10.1016/j.ijfatigue.2012.09.009