Technical Diagnostics and Non-Destructive Testing, №2, 2017 pp. 42-49
Ultrasonic method of evaluation of diffused material damage based on back-scattered signal
R. I. Romanishin, Ya. L. Ivanitskii, V. V. Koshovyi, S. T. Shtayura, I. M. Romanishin, O. M. Mokriy, P. M. Semak
Non-destructive method volume based on recording of back-scattered ultrasonic signal in from of A-scan was proposed for evaluation of diffused damage in metal. Informative technologies of processing of back-scattered signal and results of experimental testing on samples with different level of hydrogen damage were presented. Ref. 25, Figures 4
Keywords: diffused damage, ultrasonic back-scattered signals, statistical processing, dispersion, B-scan
1. Rodyushkin V. M. (2009) ot poiska defektov k poisku preddefektnogo sostoyaniya. Vestnik nauchno-tekhnicheskogo razvitiya, 4, 51–56.
2. Kozinkina A. I., Rybakova L. M., Berezin A. V. (2006) Otsenka stepeni mikrorazrusheny pri deformatsii metallicheskikh materialov. Zavodskaya laboratoriya. Diagnostika materialov, 72, 4, 39–42.
3. Bobyr N. I., Babenko A. Ye., Khalimon A. P. (2008) Kontinualnaya mekhanika povrezhdennosti i yee ispolzovaniye v zadachakh slozhnogo malotsiklovogo nagruzheniya. Tekhnicheskaya diagnostika i nerazrushayushchy kontrol, 4, 25–34.
4. Lebedev A. A. (2008) Novye kharakteristiki degradatsii materiala na stadii razvitiya rasseyannykh povrezhdeny. Tam zhe, 4, 35–44.
5. Nedoseka S. A., Nedoseka A. Ya. (2010) Integrated assessment of damage level and residual life of metals with certain operating life. Tam zhe, 1, 9–16.
6. Nedosieka S. A. (2010) Diahnostyka i prohnozuvannia resursu zvarnykh konstruktsii metodom akustychnoi emisii. AR d-ra tekhn. nauk po spets. 05.02.10 «Diahnostyka materialiv i konstruktsii», IEZ im. Ye. O. Patona NAN Ukrainy, Kyiv.
7. Veksler Ye. Ya., Zamekula I. V., Tolstov V. Yu., Semeshko Ye. V. (2010) Technology of diagnostics and assessment of residual life of high-pressure steam pipelines of thermal power plants by the level of metal microdamage. Tekhnicheskaya diagnostika i nerazrushayushchy kontrol, 1, 23–31.
8. Mishakin V. V., Klyushnikov V. A., Gonchar A. V. (2015) Svyaz energii deformatsii s koeffitsiyentom Puassona pri tsiklicheskom nagruzhenii austenitnoy stali. Zhurnal tekhnicheskoy fiziki, 85, vyp. 5, 32–36.
9. Petrov A. I., Razuvayeva M. V. (2015) Otsenka kriteriya vzaimodeystviya por v deformirovannykh materialakh. Tam zhe, 85, vyp. 4, 130–133.
10. Stepanova L. V., Igonin S. A. (2014) Opisaniye rasseyannogo razrusheniya: parametr povrezhdennosti Yu. N. Rabotnova: istoricheskaya spravka, fundamentalnye rezultaty i sovremennoye sostoyaniye. Vestnik SamGU – Yestestvennonauchnaya seriya, 3(114), 97–114.
11. Rabotnov Yu. N. (1959) O mekhanizme dlitelnogo razrusheniya. Voprosy prochnosti materialov i konstruktsy. Moskva, Izd-vo AN SSSR, ss. 5–7.
12. Kachanov L. M. (1958) O vremeni razrusheniya v usloviyakh polzuchesti. Izv. AN SSSR. OTN, ss. 26–31.
13. Yerofeyev V. I., Nikitina Ye. A. (2010) Samosoglasovannaya dinamicheskaya zadacha otsenki povrezhdennosti materiala akusticheskim metodom. Akustichesky zhurnal,. 56, 4, 554–557.
14. Kashtanov A. V., Petrov Yu. V. (2006) Energetichesky podkhod k opredeleniyu mgnovennoy povrezhdennosti. Zhurnal tekhnicheskoy fiziki, 76, vyp. 5, 71–75.
15. Muravyev V. V., Zuyev L. B., Komarov K. L. (1996) Skorost zvuka i struktura stali i splavov. Moskva, Nauka.
16. Zaytsev V. Yu., Nazarov V. Ye., Talanov V. I. (2006) «Neklassicheskiye» proyavleniya mikrostrukturno-obuslovlennoy nelineynosti: novye vozmozhnosti dlya akusticheskoy diagnostiki. Uspekhi fizicheskikh nauk, 1, 97–102.
17. Birring A. S., Bartlett M. L., Kawano K. (1989) Ultrasonic Detection of Hydrogen Attack in Steels. Corrosion (National Associition of Corrosion Engineers), 45, 3.
https://doi.org/10.5006/1.357785218. Hirsekorn S., Van Andel P. W., Netzelmann U. (1998) Ultrasonic Methods to Detect and Evaluate Damage in Steel. NDT & E., 15:6, 373–393;
https://doi.org/10.1080/1058975000895288019. Kot R. (2001) Hydrogen Attack, Detection, Assessment and Evaluation. 10th APCNDT. http://www.ndt.net/apcndt2001/papers/1154/1154.htm
20. Molika Nardo R., Cerniglia D., Lombardo P. et al. (2016) Detection, characterization and sizing of hydrogen induced cracking in pressure vessels using phased array ultrasonic data processing. 21st European Conference on Fracture, ECF21, 20–24 June 2016, Catania, Italy. Procedia Structured Integrity, 2, 581–588.
21. http://www.williamspublishing.com/PDF/5-8459-0710-1/part.pdf.
22. Isimaru A. (1981) Rasprostraneniye i rasseyaniye voln v sluchayno-neodnorodnykh sredakh. t. 1. Moskva, Mir.
23. Yermolov I. N., Aleshin N. P., Potapov A. I. (1991) Kn. 2. Akusticheskiye metody kontrolya: prakt. posobiye. Sukhorukov V. V. (red.) Nerazrushayushchy kontrol. V 5 kn. Moskva, Vysshaya shkola.
24. Spivak L. V. (2008) Sinergicheskiye effekty deformatsionnogo otklika v termodinamicheski otkrytykh sistemakh metall-vodorod. Uspekhi fizicheskikh nauk, 178, 9, 897–922.
25. http://energyfirefox.blogspot.com/2012/02/boxplot.html