Eng
Ukr
Rus
Print
2017 №02 (04) DOI of Article
10.15407/tdnk2017.02.05
2017 №02 (06)

Technical Diagnostics and Non-Destructive Testing 2017 #02
Technical Diagnostics and Non-Destructive Testing, №2, 2017 pp. 33-41
A. A. Zaporozhets, A. D. Sverdlova
Peculiarities of application of Smart Grid technology in systems for monitoring and diagnostics of heat-and-power engineering objects.
 
The possibilities of application of “smart grids” in the systems for monitoring and diagnostics of heat-and-power engineering equipment were considered. The reasons of failures and emergencies of equipment for generation, transporting and consumption of thermal energy were analyzed. Considered were the methods of non-destructive testing applicable to diagnostics of technical assemblies and informative signals, which appear in process of power equipment operation. Functioning structures of heat-and-power engineering equipment were proposed for application of the Smart Grid technology in the systems for monitoring and diagnostic of corresponding hierarchy. The main advantages of power grids based on the Smart Grid technology in comparison with traditional grids were investigated. A structure was developed for multi-level system of diagnostic of heat-and-power engineering equipment with possibility of application of wire and wireless channels of information communication. Ref. 17, Tables 4, Figures 5
 
Keywords: diagnostic system, heat-and-power engineering equipment, non-destructive testing, Smart Grid technology
1. Babak V. P. ta in. (2016) Aparatno-prohramne zabezpechennia monitorynhu ob'iektiv heneruvannia, transportuvannia ta spozhyvannia teplovoi enerhii. Kyiv, In-t tekhnichnoi teplofizyky NAN Ukrainy. [in Ukrainian]
2. Yershov S. V., Dmitriyev A. M. (2014) Analiz metodik i podkhodov k probleme diagnostirovaniya tekhnicheskogo sostoyaniya setey elektrosnabzheniya. Izvestiya TulGU. Tekhnicheskiye nauki, 8, 88-97. [in Russian]
3. Gerike B. L. (1999) Monitoring i diagnostika tekhnicheskogo sostoyaniya mashinnykh agregatov: Ucheb. posobiye v 2-kh ch. Ch.1.: Monitoring tekhnicheskogo sostoyaniya po parametram vibratsionnykh protsessov. – Kemerovo, Kuzbas. gos. tekh. un-t. [in Russian]
4. Abramov I. L. (2011) Vibrodiagnostika energeticheskogo oborudovaniya: ucheb. posobiye. Kemerovo, Kuzbas. gos. tekh. un-t. [in Russian]
5. Belyayev S. A., Litvak V. V., Solod S. S (2008) Nadezhnost teploenergeticheskogo oborudovaniya TES. Tomsk, Izd-vo NTL. [in Russian]
6. Babak V. P. i dr. (2016) Povysheniye effektivnosti szhiganiya topliva s uchetom neopredelennosti izmereniya kontsentratsii kisloroda. Vostochno-Yevropeysky zhurnal peredovykh tekhnology. 6, 8 (84). 54–59. [in Russian]
7. Babak V. P., Zaporozhets A. O. (2014) Systema yakosti horinnia povitriano-palyvnoi sumishi v kotloahrehatakh maloi ta serednoi potuzhnosti. Metody ta prylady kontroliu yakosti. 2(33). 106–114. [in Ukrainian]
8. Babak V. P., Zaporozhets A. O., Redko O. O. (2015) Pidvyshchennia tochnosti vymiriuvannia koefitsiienta nadlyshku povitria v kotloahrehatakh iz zastosuvanniam hazoanalizatoriv elektrokhimichnoho typu. Promyshlennaya teplotekhnika. 1. 82–96. [in Ukrainian]
9. Zaporozhets A. A. (2014) Avtomaticheskaya sistema regulirovaniya tyagodutyevymi mekhanizmami kotla s ispolzovaniyem zondovogo alfa-indikatora. Nauka i mir. 3. 168–170. [in Russian]
10. Volikov A. N., Novikov O. N., Okatyev A. N. (2010) Povysheniye effektivnosti szhiganiya topliva v kotloagregakh. Energonadzor-inform. 1. 54–57. [in Russian]
11. Mikhaylova N. L. i dr. (2016) Infrakrasnaya diagnostika teploenergeticheskogo oborudovaniya. Aktualnye problemy gumanitarnykh i yestestvennykh nauk. 1–2. 103–105. [in Russian]
12. Ahmed Md. A., Huda A.S.N, Isa N.A.M. (2015) Recursive construction of output-context fuzzy systems for the condition monitoring of electrical hotspots based on infrared thermography. Engineering Applications of Artificial Intelligence. 39. 120–131. https://doi.org/10.1016/j.engappai.2014.11.010
13. Khramshin V. R. et al. (2015) Monitoring technical state of the power transformers is a necessary condition of the Smart-Grid technology introduction within the industrial electric networks. Young researchers in electrical and electronic engineering conference (EIConRusNW), 2015 IEEE NW Russia. – St. Petersburg, рр. 214–220. https://doi.org/10.1109/EIConRusNW.2015.7102265
14. Mariam L., Basu M., Conlon M. F. A Review of existing microgrid architectures (2013) Journal of engineering. 2013, Article ID 937614.
15. Nedoseka A. Ya. (2005) Kontrol kriticheskogo napryazhennogo sostoyaniya metodom akusticheskoy emissii. V mire nerazrushayushchego kontrolya, 1 (27), 14–16. [in Russian]
16. Paton B. E. i dr. (2012) Experience of the E.O.Paton Institute of the NAS of Ukraine in the field of acoustic-emission monitoring. Tekhnicheskaya diagnostika i nerazrushayushchy kontrol. 1. 7–22. [in Russian]
17. Myslovych M. V., Sysak R. M. (2015) Pro deiaki osoblyvosti pobudovy intelektualnykh bahatorivnevykh system tekhnichnoi diahnostyky elektroenerhetychnykh ob'iektiv. Tekhnichna elektrodynamika. 1. 78–85. [in Ukrainian]  
>