Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №02 (02) DOI of Article
2021 №02 (04)

Technical Diagnostics and Non-Destructive Testing 2021 #02
Technical Diagnostics and Non-Destructive Testing #2, 2021, pp. 20-29

Features of the destruction of reinforcing ropes in nuclear power plant containment

L.M. Lobanov1, V.M. Torop1, M.D. Rabkina1, V.A. Kostin1, O.O. Shtofel2
1E.O. Paton Electric Welding Institute of NASU. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». 37 Peremohy Ave., 03056, Kyiv, Ukraine. E-mail: kvas69@ukr.net

The increased number of ruptures in reinforcing ropes after short-time functioning may be associated with their manufacturing and operating conditions. The objective is to establish the main causes of premature breakage of high-strength reinforcement bars, based on the elemental and structural-phase composition of steel, mechanical properties of the wires, as well as the nature of the damaged surfaces and fracture characteristics. 18 Ref., 6 Tabl., 8 Fig.
Keywords: reinforcing rope, nuclear power plant, fractal approach, metallographic investigations, fractographic investigations, fracture mechanics, fretting-corrosion

Received: 26.04.2021


1. (1989) Instructions on maintenance of containment prestressing system of the main series and upgraded design for NPP with power units WWER-1000 of 302, 338 and 187 types. Moscow [in Russian].
2. Rapina, K.A. (2013) Designs of reinforced concrete shields of reactor units. Budivelni Konstruktsii, 78(1), 84-91 [in Russian].
3. Savitsky, N.V., Shvets, V.B., Sedin, V.L. et al. (2012) System of ensuring the safety of building structures of Ukrainian NPP and TPP. Stroitelstvo, Materialovedenie, Mashinostroenie, 65, 531-540 [in Russian].
4. Report on Aging of Nuclear Power Plant Reinforced Concrete Structures. URL: https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6424/
5. Bonded or Unbonded Technologies for Nuclear Reactor Prestressed Concrete Containments. URL: https://www.oecd-nea.org/nsd/docs/2015/csni-r2015-5.pdf
6. Torop, V.M., Rabkina, M.D., Shtofel, O.O. et al. (2018) On the causes for fracture of reinforcement ropes of containment of NPP nuclear power units. Fiz.-Khimich. Mekhanika Materialiv, 54(2), 98-106 [in Ukrainian]. https://doi.org/10.1007/s11003-018-0179-y
7. Ivanova, V.S., Balankin, A.S., Bunin, I.Zh., Oksagoev, A.A. (1994) Synergy and fractals in materials science. Moscow, Nauka [in Russian].
8. Usov, V.V., Rabkina, M.D., Shkatulyak, N.M., Cherneva, T.S. (2014) Fractal dimension of grain boundaries and mechanical properties of oxygen cylinder metal. Fiz.-Khimich. Mekhanika Materialiv, 4, 117-124 [in Ukrainian]. https://doi.org/10.1007/s11003-015-9761-8
9. Dubuc, B., Roques-Carmes, C., Tricot, C., Zucker, S.W. (1989) Evaluating the fractal dimension of profiles. Phys. Rev. A., 39(2), 1500-1512. https://doi.org/10.1103/PhysRevA.39.1500
10. (1984) GOST 1497-84: Metals. Methods of tension test (ISO 6892-84, СT SMEA 471-88) [in Ukrainian].
11. (1979) GOST 14959-79: Spring carbon and alloy steel bars. Specifications. Modifications Nos. 1, 2, 3, 4, 5, 6 [in Russian].
12. (1970) GOST 1778-70: Steel. Metallographic methods for the determination of nonmetallic inclusions (ISO 4967-79) [in Russian].
13. (1981) GOST 7348-81: Carbon steel wire for reinforcement of prestressed concrete constructions. Specifications. (СТ SMEA 5728-86) [in Urkainian].
14. (1995) TU U 00191046.014-95: 5.0 mm diameter round wire from carbon steel for reinforcement of prestressed containment vessels of NPP [in Russian].
15. Hansen, N.R., Schreyer, A. (1994) Thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct., 31(3), 359-389. https://doi.org/10.1016/0020-7683(94)90112-0
16. Lemaitre, J., Dufailly, J. (1987) Damage measurements. Engineering Fracture Mechanics, 28(516), 643-661. https://doi.org/10.1016/0013-7944(87)90059-2
17. Bonora, N., Ruggiero, A., Gentile, D., De Meo, S. (2011) Practical applicability and limitations of the elastic modulus degradation technique for damage measurements in ductile metals. Strain, 47, 241-254. https://doi.org/10.1111/j.1475-1305.2009.00678.x
18. (1982) Fractography and atlas of fractograms: Refer. book. Moscow, Metallurgiya, 36-38 [in Russian].

Advertising in this issue: