“The Paton Welding Journal” #08_2023 will be freely distributed from 11 to 15 September during the exhibition SCHWEISSEN & SCHNEIDEN 2023, Messe Essen, Norbertstrasse 2, Essen, Germany at the stand of the Paton Welding Institute: Hall 8 Stand 8B29.1.
You can also order this issue of the Journal in electronic form for free.
Send applications to E-mail: journal@paton.kiev.ua
Contents of the issue
1G.V. Karpenko Physico-Mechanical Institute of NASU. 5 Naukova Str., 79060, Lviv, Ukraine. Е-mail: roman.yuzefovych@gmail.com
2Politechnika Bydgoska. 7 Prof. Sylwestra Kaliskiego, 85-796 Bydgoszcz, Poland
3Lviv Polytechnic National University. 12 S. Bandery str., 79013, Lviv, Ukraine
4Odesa National Maritime University. 34 I. Mechnikova Str., 65029, Odesa, Ukraine
The paper describes the properties of a model of vibration of interconnected rotating mechanisms in the form of biperiodically
nonstationary random processes (BPNRP). Individual cases of such a model are considered, which enable performing data analysis
by the methods of periodically nonstationary random processes (PNRP). These methods are used to analyze the condition
of mechanisms at increased vibration level. Separation of deterministic and stochastic vibrations was performed and parameters
describing the structure of hidden periodicities of the first and second order, were determined. The causes for increased vibration
level were established. 18 Ref., 3 Tabl, 14 Fig.
Keywords: hoisting mechanism, vibration, periodical nonstationarity, deterministic oscillations, amplitude spectrum, stochastic
high-frequency modulation, dispersion
Received: 07.12.2021
References
1. Javorskyj, I.M. (2013) Mathematical models and analysis of stochastic oscillations. Lviv, PMI of NAS of Ukraine [in Ukrainian].
2. Javorskyj, I., Mykhailyshyn, V. (1996) Probabilistic models and statistical analysis of stochastic oscillations. Pattern Recogn. Image. Anal., 6(4), 749-763.
3. Javorskyj, I., Yuzefovych, R., Kravets, I., Matsko, I. (2014) Methods of periodically correlated random processes and their generalizations. Cyclostationarity: Theory and Methods. Lecture Notes in Mechanical Engineering. F. Chaari, J. Leskow, A. Sanches-Ramires. New York, Springer Int. Publish. Switzerland, 73-93. https://doi.org/10.1007/978-3-319-04187-2_6 4. Javorskyj, I., Dzeryn, O., Yuzefovych, R. (2019) Analysis of mean function discrete LSM-estimator for biperiodically nonstationary random signals. Math. Model. Comput., 6(1), 44-57. https://doi.org/10.23939/mmc2019.01.044 5. McCormick, A.C., Nandi, A.K. (1998) Cyclostationarity in rotating machine vibrations. Mech. Syst. Signal Process., 12(2), 225-242. https://doi.org/10.1006/mssp.1997.0148 6. Capdessus, C., Sidahmed, M., Lacoume, J.L. (2000) Cyclostationary processes: Application in gear fault early diagnostics. Ibid, 14(3), 371-385. https://doi.org/10.1006/mssp.1999.1260 7. Antoni, J., Bonnardot, F., Raad, A., El Badaoui, M. (2004) Cyclostationary modeling of rotating machine vibration signals. Ibid, 18, 1285-1314. https://doi.org/10.1016/S0888-3270(03)00088-8 8. Antoni, J. (2009) Cyclostationarity by examples. Ibid, 23, 987-1036. https://doi.org/10.1016/j.ymssp.2008.10.010 9. Randall, R.B., Antoni, J. (2011) Rolling element bearing diagnostics - A tutorial. Ibid, 25(2), 485-520. https://doi.org/10.1016/j.ymssp.2010.07.017 10. Zimroz, R., Bartelmus, W. (2009) Gearbox condition estimation using cyclostationary properties of vibration signal. Key Engineering Mater., 413(1), 471-478. https://doi.org/10.4028/www.scientific.net/KEM.413-414.471 11. Hurd, H.L., Miamee, A. (2007) Periodically Correlated Random Sequences: Spectral Theory and Practice. New York, Wiley. https://doi.org/10.1002/9780470182833 12. Javorskyj, I., Kravets, I., Matsko, I., Yuzefovych, R. (2017) Periodically correlated random processes: Application in early diagnostics of mechanical systems. Mech. Syst. Signal Process., 83, 406-438. https://doi.org/10.1016/j.ymssp.2016.06.022 13. Javorskyj, I., Matsko, I., Yuzefovych, R. et al. (2021) Methods of Hidden Periodicity Discovering for Gearbox Fault Detection. Sensors., 21, 6138. https://doi.org/10.3390/s21186138 14. Javorskyj, I., Leśkow, J., Kravets, I. et al. (2011) Linear filtration methods for statistical analysis of periodically correlated random processes - Part II: Harmonic series representation. Signal Process., 91, 2506-2519. https://doi.org/10.1016/j.sigpro.2011.04.031 15. Yuzefovych, R., Javorskyj, I., Matsko, I. et al. (2020) Devices for detection of defects at early stages of their initiation at determination of technical condition of mechanisms. Tekh. Diahnos. and Neruiniv. Kontrol, 4, 8-16 [in Ukrainian]. https://doi.org/10.37434/tdnk2020.04.02 16. Javorskyj, I., Yuzefovych, R., Lychak, O. et al. (2021) Methods and means of early vibrodiagnostics of bearing units of rotary mechanisms. Tekh. Diahnos. and Neruiniv. Kontrol, 2, 30-37. [in Ukrainian] https://doi.org/10.37434/tdnk2021.02.04 17. Javorskyj, I., Yuzefovych, R., Matsko, I., Zakrzewski, Z. (2021) The least square estimation of the basic frequency for periodically non-stationary random signals. Digital Signal Process.: A Review Journal, 103333. https://doi.org/10.1016/j.dsp.2021.103333 18. Javorskyj, I., Yuzefovych, R., Matsko, I., Kurapov, P. (2021) Hilbert transform of a periodically non-stationary random signal: Low-frequency modulation. Ibid, 116, 103113. https://doi.org/10.1016/j.dsp.2021.103113