Technical Diagnostics and Non-Destructive Testing #1, 2022, pp. 22-30
Application of fractal analysis in diagnostics of technical condition of metal structure elements
V.V. Usov1, M.D. Rabkina2, N.M. Shkatulyak1, N.I. Rybak1, O.O. Stofel3
11K.D. Ushinskii South-Ukraine National Pedagogical University. 26 Staroportofrankivska Str., 65020,
Odessa, Ukraine. E-mail: valentinusov67@gmail.com
2E.O. Paton Electric Welding Institute of NASU. 11 Kazymyr Malevych str., 03150, Kyiv, Ukraine.
E-mail: marjanara17@gmail.com
3National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». 37 Peremohy Ave., 03056,
Kyiv, Ukraine
It is shown that fractal analysis, as an additional tool of technical diagnostics and non-destructive testing, allows determination of
the most important features of the state and behaviour of metal structure elements during their operation and failure. Examples of
application of fractal dimension of the fractures are presented to assess the critical dimension of brittle cracks and to determine
its eff ect on impact toughness, yield limit, ultimate strength, and destructive pressure at hydraulic testing, and to detect the
interrelation of fractal dimension with fatigue life after low-cycle fatigue fracture of metal of pipeline welded joints. It is found
that the nature of fractal dimensions of the fractures and diagrams of time dependence of the applied load at impact loading
is due to the direction of cutting and temperature of testing the samples. It is shown that the main component of {001} <110>
texture of low-alloyed steel promotes an increase of fractal dimension of the fractures and development of brittle fracture at
impact testing. Ref. 25, Tabl. 4, Fig. 9.
Keywords: impact testing, fractal dimension, brittle crack, destruction
Received: 16.12.2021
References
1. Usov V.V., Girenko V.S., Rabkina M. D. et al. (1993) Effect of the crystallographic texture on the anisotropy of fracture characteristics of control-rolled low-alloy steel. Materials Science, 29 (2) 146-150. http://lib.gen.in/d55dae53541a8dc954b7f4d30d0a34cf.pdf
https://doi.org/10.1007/BF005588132. Lyakishev, N.P.,Egiz, I.V., Shamraj, V.M. (2000) Texture and crystallographic peculiarities of fracture of steel X70 pipe material. Metally, 2, 68-72 [in Russian]. http://www.imet.ac.ru/metally/nambers.htm
3. Ivanova, V.S., Balankin, A.S., Bunin, I.Zh., Oksagoev, A.A. (1994) Synergy and fractals in materials science. Moscow, Nauka [in Russian]. https://www.researchgate. net/publication/268999858_Sinergetika_i_fraktaly_v_materialovedenii
4. Mandelbrot, B. (2002) Fractal geometry of nature. Moscow, Institute for Computer Research. https://ruwapa.net/book/benua-mandelbrot-fraktalnaya-geometriya-prirody/
5. Watanabe, T., Tsurekawa, S. (2004) Toughening of brittle materials by grain boundary engineering. Mater. Sci. Engng. A., 387-389, 447-455. https://www.researchgate.net/publication/222146139_Toughening_of_Brittle_Materials_by_Grain_Boundary_Engineering
https://doi.org/10.1016/S0921-5093(04)00653-76. Vitek, V., Chen, S.P., Voter, A.F. et al. (1989) Grain boundary structure and intergranular fracture in L12 ordered alloys. Mater. Sci. Forum, 46, 237-252. https://www.scientific.net/ MSF.46.23
https://doi.org/10.4028/www.scientific.net/MSF.46.2377. Watanabe, T. (1993) Grain boundary design and control for high temperature materials. Mater. Sci. Engng. A., 166, 11-28. https://www.sciencedirect.com/science/article/abs/pii/092150939390306Y
https://doi.org/10.1016/0921-5093(93)90306-Y8. Zhou, H.W., Xie, H. (2003) Direct estimation of the fractal dimensions of a fracture surface of rock. Surface Review and Letters, 10(5), 751-762. https://paperzz.com/doc/9119828/direct-estimation-of-the-fractal-dimensions-of-a
https://doi.org/10.1142/S0218625X030055919. Lucas, M.A. (2012) Foundations of Measurement Fractal Theory for the Fracture Mechanics Applied. In Fracture Mechanics, Edited by Alexander Belov. https://www.intechopen.com/chapters/41469
10. Harfa: download. http://www.fch.vut.cz/lectures/imagesci/includes/harfa_download.inc.php
11. ACDSee Professional 2019. https://www.acdsee.com/en/products/photo-studio-professional
12. Usov, V.V., Shkatulyak, N.M. (2005) Fractal Nature of the Brittle Fracture Surfaces of Metal. Materials Science, 41(1), 62-66. https://www.researchgate.net/publication/226818869_Fractal_Nature_of_the_Brittle_Fracture_Surfaces_of_Metal
https://doi.org/10.1007/s11003-005-0132-813. Mosolov, A.B. (1991) Fractal Griffi th crack. Zhurn. Tekh. Fiz., 64, (7), 57-60 [in Russian]. http://journals.ioff e.ru/articles/viewPDF/24666
14. Honeycomb, R. (1962) Plastic deformation of metals. Moscow, IL [in Russian]. https://ua1lib.org/book/2433166/2721d7
15. Bernshtejn, M.L., Zajmovsky, M.A. (1979) Mechanical properties of metals. Moscow, Metallurgiya [in Russian]. https://ua1lib.org/book/2720875/410310
16. Usov, V.V., Rabkina, M.D., Shkatulyak, N.M., Cherneva, T.S. (2015) Fractal dimension of grain boundaries and mechanical properties of the metal of oxygen cylinder. Material science, 50(4), 612-620. https://www.researchgate.net/publication/276456141_Fractal_Dimension_of_Grain_Boundaries_and_Mechanical_Properties_of_the_Metal_of_Oxygen_Cylinders
https://doi.org/10.1007/s11003-015-9761-817. Usov, V.V., Gopkalo, E.E., Shkatulyak, N.M. et al. (2015) Texture, Microstructure, and Fractal Features of the Low Cycle Fatigue Failure of the Metal in Pipeline Welded Joints. Russian Metallurgy (Metally), 9, 759-770. https://www.researchgate.net/publication/289569432_Texture_microstructure_and_fractal_features_of_the_low-cycle_fatigue_failure_of_the_metal_in_pipeline_welded_joints
https://doi.org/10.1134/S003602951509012818. Carney, L.R., Mecholsky, J.J. (2013) Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel. Mater. Sci. Applicat., 4(4), 258-267.
https://doi.org/10.4236/msa.2013.4403219. Glushkov, A., Khetselius, O., Brusentseva, S., Duborez, A. (2014) Modeling chaotic dynamics of complex systems with using chaos theory, geometric attractors, quantum neural networks. Proc Int. Geom. Center, 7(3), 87-94, http://eprints.library.odeku.edu.ua/id/eprint/2938/1/%D0%93%D0%BB%D1%83%D0%A5%D0%B5%D1%86%D0%91%D1%80%D1%83%D0%94%D1%83%D0%B1Pmgc_2014_7_3_13%20(1).pdf
20. Glushkov, A.V., Buyadzhi, V.V., Ternovsky, V.B. et al. (2018) A chaos-dynamical approach to analysis, processing and forecasting measurements data of the chaotic quantum and laser systems and sensors. Sensor Electronics and Мicrosystem Technologies, 15(4) 41-49, http://eprints.library.odeku.edu.ua/id/eprint/4481/1/2018%20T15%20%234%20CEMST.pdf
https://doi.org/10.18524/1815-7459.2018.4.15049721. Usov, V., Rabkina, M., Shkatulyak, N. et al. (2020) Anisotropy of Fractal Dimensions of Fractures and Loading Curves of Steel Samples During Impact Bending. Material Science, 17(4), 142-151. http://ijmse.iust.ac.ir/article-1-1680-en.pdf
22. Kondryakov, E.A., Zhmaka, V.N., Kharchenko, V.V. et al. (2005) System of Strain and Load Measurement in Dynamic Testing of Materials. Strength Mater, 37, 331-335.
https://doi.org/10.1007/s11223-005-0046-623. Steel. Charpy impact V-notch test. Instrumental test method [in Russian]. http://rossert.narod.ru/alldoc/info/2z77/g39315.html
24. Winston, R. (Editor) (2015) Oil and Gas Pipelines: Integrity and Safety, Handbook. https://www.worldcat.org/title/oil-and-gas-pipelines-integrity-and-safety-handbook/oclc/904715784
25. Pineau, A., Benzerga, A.A., Pardoen, T. (2016) Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424-483. https://par.nsf.gov/servlets/purl/10019128Pineau
https://doi.org/10.1016/j.actamat.2015.12.034
Advertising in this issue: