Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №03 (03) DOI of Article
2021 №03 (05)

Automatic Welding 2021 #03
Avtomaticheskaya Svarka (Automatic Welding), #3, 2021, pp. 23-28

Peculiariyies of emergency destruction of the technological pipeline

M.D. Rabkina, V.А. Kostin, T.G. Solomiychuk
E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Analysis of failure of process pipeline, including a study of the properties, chemical composition and structure of the metal of welded joints, as well as the site of fracture and nature of crack propagation, made it possible to establish the most probable causes that led to its premature failure. It is assumed that such reasons are: a defect in a longitudinal weld; residual stresses in the pipe resulting from local heat treatment of the assembly circular weld; as well as longitudinal stresses arising from deflection of the pipeline between the supports. Ref. 9, Tabl. 4, Fig. 7.
Keywords: technological pipeline; longitudinal and circular welded joints; defects in welded joints; lacks-of-fusion; structural heterogeneity; lamellar tearing; destruction

Received: 01.02.2021


1. Girgin Serkan, K. (2015) Elisabeth Lessons Learned from Oil Pipeline Natech Accidents and Recommendations for Natech Scenario Development – Final Report. ©EU. Abstract, Published.
2. Kushnareva, O.V., Golubaev, D.V. (2018) Analysis of accident causes on objects of main gas-and-oil pipelines: Problems and solutions. Master’s J., 1, 37–43.
3. Kuznetsova, N.V., Krasnokutsky, A.N. (2012) Experience of calculation and design of transfer pipelines. Tekhnologii Nefti i Gaza, 3, 54–59 [in Russian].
4. Lobanov, L.M., Poznyakov, V.D., Makhnenko, O.V. (2013) Formation of cold cracks in welded joints from high-strength steels with 350-850 MPa yield strength. The Paton Welding J., 7, 8–13.
5. Lobanov, L.M., Girenko, V.S., Rabkina, M.D. (2001) Anisotropy of crack resistance characteristics as one of the causes of crack initiation in welded bridge spans. In: Diagnostics, life and reconstruction of bridges and building structures, Transact., Lviv, Kamenyar, Issue 3, 138-147 [in Russian].
6. Farber, V.M., Khotinov, V.A., Belikov, S.V. et al. (2016) Separations in steels subjected to controlled rolling, followed by accelerated cooling. Physics of Metals and Metallography, 117, 407-421. https://doi.org/10.1134/S0031918X16040050
7. Usov, V.V., Girenko, V.S., Rabkina, M.D. et al. (1993) Influence of crystallographic texture on anisotropy of fracture characteristics of low-alloyed steel of controlled rolling. In: Fizikokhimicheskaya Mekhanika Materialov, 2, 47-52 [in Russian]. https://doi.org/10.1007/BF00558813
8. TU 1381-003-47966425–2006: Steel longitudinal welded pipes with an outer diameter of 610…1420 mm [in Russian].
9. Fellous, J. (1982) Fractography and atlas of fractograms. Moscow, Metallurgiya [in Russian].

Advertising in this issue: