Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2017 №03 (02) DOI of Article
2017 №03 (04)

Technical Diagnostics and Non-Destructive Testing 2017 #03
Technical Diagnostics and Non-Destructive Testing, №3, 2017 pp. 21-28
AE-diagnostics of fracture of dental restoration materials
V. R. Skalsky1, V. F. Makeev2, O. M. Stankevich1, O. S. Kirmanov2
1G. V. Karpenko Physical-Mechanical Institute of the NAS of Ukraine, 5, Naukova str., 79060, Lviv, Ukraine. Е-mail: skalsky.v@gmail.com
2Danylo Halytsky Lviv National Medical University, 69, Pekarska str., 79010, Lviv, Ukraine, Е-mail: ort_stom@meduniv.lviv.ua
The features of fracture of different types of dental materials for temporary orthopedic structures and endocrowns under tensile and compression loads, respectively, were considered. For the analysis of acoustic emission signals, a continuous wavelet transformation was used. According to the energy criterion, the distribution of typical types of macro-fracture for each material was established. The results of investigations are correlated with those known in the literature. It was established that for both types of dental materials of different nature, a common feature is the alternation of viscous and viscous-brittle fracture with a brittle one throughout the entire time of loading the specimens. 28 – Ref., 2 – Tab., 8 – Fig.
Key words: dental materials, fracture, acoustic emission, wavelet transformation, energy criterion
  1. (2008) Dental materials and their selection. Ed. by W.J. O'Brien. 4th Ed. Quintessence Publ. Co., Inc.
  2. Scherrer, S.S., Wiskott, A.H., Coto-Hunziker Vol. et al. (2003) Monotonic flexure and fatigue strength of composites for provisional and definitive restorations. J. of Prosthetic Dentistry, 89(6), 579-588. https://doi.org/10.1016/S0022-3913(03)00174-4
  3. Balkenhol, M., Ferger, P., Mautner, M.C. et al. (2007) Provisional crown and fixed partial denture materials: Mechanical properties and degree of conversion. Dental Materials, 23, 1574-1583. https://doi.org/10.1016/j.dental.2007.06.024
  4. Kim, S.H., Watts, D.C. (2007) In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials. Ibid., 23(12), 1570-1573. https://doi.org/10.1016/j.dental.2007.06.023
  5. Kerby, R.E., Knobloch, L.A., Sharples, S. et al. (2013) Mechanical properties of urethane and bis-acryl interim resin materials. J. of Prosthetic Dentistry, 110(1), 21-28. https://doi.org/10.1016/S0022-3913(13)60334-0
  6. Albakry, M., Guazzato, M., Swain, M.V. (2003) Biaxial flexural strength, elastic moduli and X-ray diffraction characterization of three pressable allceramic materials. Ibid., 89(4), 374-380.
  7. Yoshimura, H.N., Gonzaga, C.C., Cesar, P.F. et al. (2012) Relationship between elastic and mechanical properties of dental ceramics and their index of brittleness. Ceramics International, 38(6), 4715-4722. https://doi.org/10.1016/j.ceramint.2012.02.056
  8. Elsaka, S.E., Elnaghy, A.M. (2016) Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dental Materials, 32(7), 908-914. https://doi.org/10.1016/j.dental.2016.03.013
  9. Choi, N.-S., Gu, J.-U., Arakawa, K. (2011) Acoustic emission characterization of the marginal disintegration of dental restoration. Composites Part A: Applied Science and Manufacturing, 42(6), 604-611. https://doi.org/10.1016/j.compositesa.2011.01.019
  10. Skalsky, V. R., Makeev, V. F., Stankevich, O. M. et al. (2014) Alternation of types of fractures of dental polymers at different stages of crack propagation. Fiz.-Khim. Mekhanika Materialiv, 6, 60-66 [in Ukrainian].
  11. Skalsky, V. R., Makeev, V. F., Stankevich, O. M. et al. (2015) Evaluation of strength characteristics of dental polymers by wavelet transform of acoustic emission signals. Problemy Prochnosti, 4, 67-74 [in Ukrainian].
  12. Stankevich, O. M. (2015) Application of wavelet transform of acoustic emission signals for evaluation of macrofracture of structural materials. Tekhn. Diagnost. i Nerazrush. Kontrol, 1, 36-44 [in Ukrainian]. https://doi.org/10.15407/tdnk2015.01.04
  13. Kim, K.-H., Park, J.-H., Imai, Y. et al. (1991) Fracture toughness and acoustic emission behavior of dental composite resins. Engineering Fracture Mechanics, 40(415), 811-819. https://doi.org/10.1016/0013-7944(91)90238-V
  14. Lin, C.-L., Kuo, W.-C., Yu, J.-J. et al. (2013) Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography. Dental Materials, 29, 382-388. https://doi.org/10.1016/j.dental.2012.12.003
  15. Yi, Y.-I., Kelly, J.R. (2011) Failure responses of a dental porcelain having three surface treatments under three stressing conditions. Ibid., 27, 1252-1258. https://doi.org/10.1016/j.dental.2011.09.002
  16. Liu, X., Li, H., Li, J. et al. (2013) An acoustic emission study on interfacial debonding in composite restorations. Ibid., 29, 382-388.
  17. Yang, B., Guo, J., Huang, Q. et al. (2016) Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations. Ibid., 32, 742-748. https://doi.org/10.1016/j.dental.2016.03.007
  18. Skalsky V. R., Bozhidarnik, V. V., Stankevich, O. M. (2014) Acoustic emission diagnostics of types of microfracture of structural materials. Kyiv, Naukova Dumka [in Ukrainian].
  19. Daubechies, I. (1992) Ten lectures on wavelets. Philadelphia, SIAM. https://doi.org/10.1137/1.9781611970104
  20. Vallen Systeme: The Acoustic Emission Company [Virtual Resource]: URL: http://www/vallen.de/products/software/wavelet. Title from screen (12.02.2017).
  21. Stankevych, O., Skalsky, V. (2016) Investigation and identification of fracture types of structural materials by means of acoustic emission analysis. Engineering Fracture Mechanics, 164, 24-34. https://doi.org/10.1016/j.engfracmech.2016.08.005
  22. Nazarchuk, Z. T., Skalsky, V. R. (2009) Acoustic emission diagnostics of structure elements. Vol. 3: Means and application of acoustic emission method. Kyiv, Naukova Dumka [in Ukrainian].
  23. Nazarchuk, Z., Skalskyi, V., Serhienko, O. (2017) Acoustic emission. Methodology and application. Springer International Publishing AG, XIV.
  24. Stankevych, O., Skalsky, V. (2017) The vibration of a half-space due to a buried mode I crack opening. Wave Motion, 72, 142-153. https://doi.org/10.1016/j.wavemoti.2017.02.003
  25. Pilkey, W.D. (2005) Formulas for stress, strain and structural matrices. 2nd Ed. John Wiley & Sons.
  26. Steel of ShKh15 grade. URL: http://metallicheskiy-portal.ru/marki_metallov/stk/SHX15. Title from screen (05.06.17) [in Russian].
  27. Santos, A.F., Meira, J.B., Tanaka, C.B. et al. (2010) Can fiber posts increase root stresses and reduce fracture? J. of Dental Research, 89(6), 587-591. https://doi.org/10.1177/0022034510363382
  28. Wang, Y., Darvell, B.W. (2007) Failure mode of dental restorative materials under Hertzian indentation. Dental Materials, 23, 1236-1244. https://doi.org/10.1016/j.dental.2006.11.016