2019 №02 (02) DOI of Article
2019 №02 (04)

Technical Diagnostics and Non-Destructive Testing 2019 #02
Technical Diagnostics and Non-Destructive Testing #2, 2019, pp. 18-22

Investigation of the sensitivity of output parameters of X-ray television system to the change of input parameters

NTUU «Igor Sikorsky Kyiv Polytechnic Institute». 37 Peremohy Prosp., 03056, Kyiv, Ukaine. E-mail: fel@kpi.ua

Analysis of the sensitivity of output parameters of X-ray television system of indirect transformation: signal/noise ratio, output signal and quantum detection efficiency to the change of input parameters was performed, using the mathematical model of such a system. The influence of instability of power supply to X-ray tube on output calculation result was analyzed. The group of input parameters of the model was determined, the uncertainty of which has the strongest effect on output signal of X-ray television system. 10 Ref., 2 Tabl., 2 Fig.
Keywords: digital radiography, X-ray television system, X-ray screen, signal/noise ratio, quantum detection efficiency, model parameters, parameter uncertainty

Received: 22.05.2019
Published: 14.05.2019

1. Usachev, E.Yu., Usachev, V.E., Gnedin, M.M. et al. (2014) Digital radiography system for revision of welded joints of pipelines in operation. Kontrol. Diagnostika, 6, 60-64 [in Russian]. https://doi.org/10.14489/td.2014.06.pp.060-064
2. Troitskii, V.A. Mikhailov, S.R., Pastovenskii, R.A., Shilo, D.S. (2015) Modern systems of radiation non-destructive testing. Tekh. Diagnost. i Nerazrush. Kontrol, 1, 23-35 [in Russian]. https://doi.org/10.15407/tdnk2015.01.03
3. Mikhailov, S.R. (2002) Modeling of schadow X-ray image of the controlled object in roentgenoscopic systems of nondestructive testing. Elektronika i Svyaz, 16, 59-70 [in Russian].
4. Shilo, D.S. (2015) Modeling of processes of forming the digital X-ray image. Ibid., 6, 34-41 [in Russian]. https://doi.org/10.20535/2312-1807.2015.20.6.52798
5. Shilo, D.S., Mikailov, S.R., Pisarenko, L.D. (2016) Quantum efficiency of detection of digital cineradiography systems based on scintillation screens and CCD matrices. Nerazrush. Kontrol i Diagnostika, 4, 25-38 [in Russian].
6. Troitskii, V.A., Mikhaylov, S.R., Shylo, D.S. (2017) Modelling of X-ray images of digital X-ray-TW system based on scintillation screen and CCD matrix. Tekh. Diagnost. i Nerazrush. Kontrol, 2, 17-22 [in Russian]. https://doi.org/10.15407/tdnk2017.02.03
7. Viswanathan, K. (2018) XRaySim user manual. http://xraysim.sourceforge.net/index.htm. [Accessed 30 May 2018].
8. Duvauchelle, P., Freud, N., Kaftandjian, V., Babot, D. (2000) A computer code to simulate X-ray imaging techniques. NUCL INSTRUM METH B, 170, 245-258. https://doi.org/10.1016/S0168-583X(00)00185-3
9. Lazos, D., Bliznakova, K., Kolitsi, Z.Z., Pallikarak, N. (2003) An integrated research tool for X-ray imaging simulation. Comput. Meth. Prog. Bio., 70, 241-251. https://doi.org/10.1016/S0169-2607(02)00015-9
10. Kengyelics, S.M., Laura, L.A., Treadgold, A., Davies A.G. (2018) X-ray system simulation software tools for radiology and radiography education. Comput. Biol. Med., 93, 175-183. https://doi.org/10.1016/j.compbiomed.2017.12.005