Зварювання та споріднені технології для відновлення України: Тези допов. конф. під ред. О.Т. Зельніченка. Київ, ТОВ «Видавничий Дім «Патон», 2025, с. 113-114
New capabilities of calculation methods for analyzing the weld metal structure orientation
Olha Shtofel1,2, Viktor Holovko1, Danilo Korolenko1
1ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул Казимира Малевича, 11.
2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv
Almost all of the most important metal quality indicators are determined by its microstructure. Various metallographic
studies are used to analyze the microstructure, which require a lot of time and human resources and depend
heavily on the employee qualifications. The microstructure components study determines such quality indicators as
the non-metallic inclusionstotal content, the inclusion distribution densityin the size range, the of grain boundaries
(crystallites) total length, the dislocations densityat grain boundaries, the ferrite grain density distribution with a
shape coefficient, and the structural grain orientation angledensity. This work aim is to analyze the structural components,
such as grains (crystallites), misorientation angles distribution at the intergranular boundary. To determine
the structural grains orientation angle, the EBSD (Electron back scatter diffraction) method is usually used. This
method requires special software and cannot be implemented on optical and electron microscopes commonly used
in domestic metallurgical laboratories. In addition, the EBSD method does not allow determining the grain misorientation
angles at the intergranular boundary, which is an indicator that has a significant impact on the metalmechanical
properties. Keywords: EBSD, structure, metal, grain, orientation, misorientation, computer analysis, welded joints
Список літератури
1. Koko, A., Tong, V., Wilkinson, A.J., Marrow, T.J. (2023) Aniterative method for reference pattern selection in high-resolution
electron back scatter diffraction (HR-EBSD). Ultramicroscopy, 248, 113705. DOI: https://doi.org/10.1016/j.ultramic.2023.113705
2. ISO. Electronic resource. https://cdn.standards.iteh.ai
3. Atiquzzaman, M. (1992) Multirezolution Hough transform — inefficient method of detecting patterns in images. IEEE Transact.
on Pattern Analysis and Machine Intelligence, 14(11), 1090–1095.
4. Zhuravel, I.M., Maksymovych, V.M. (2018) Quantitative analysis of orientation and elongation of grains on metallographic images
using Hough transformations. Scientific Bulletin of UNFU, 28(5), 135–138. DOI: https://doi.org/10.15421/40280528
5. Holovko, V., Stofel, O., Korolenko, D. (2025) Fractal analysis method of structural components orientation. International J. of
Recent Innovations in Academic Research, 9(2), 130–138. DOI: https://doi.org/10.5281/zenodo.15266778
6. Holovko, V.V., Yermolenko, D.Yu., Stepanyuk, S.M., Zhukov, V.V., Kostin, V.А. (2020) Influence of introduction of refractory
particles into welding pool on structure and properties of weld metal. The Paton Welding J., 8, 8–14. DOI: https://doi.org/10.37434/tpwj2020.08.01
7. Shtofel, O.O. , Holovko, V.V, Korolenko, D.Yu. (2025) Orientation of crystallites and grains on the weld surface depending on the
image quality. Organization of scientific research in modern conditions 2025, usc30-00, Seattle, Washington, USA, pp. 3–8. DOI:
https://doi.org/10.30888/2709-2267.2025-30-00-011
New capabilities of calculation methods for analyzing the weld metal structure orientation
Olha Shtofel1,2, Viktor Holovko1, Danilo Korolenko1